Thursday 28 Sep 2017Quantum chaos, eigenvalue statistics and the Fibonacci sequence (Mathematics Colloquium)

Prof. Zeev Rudnick - Tel-Aviv University

H103 14:30-16:30

One of the outstanding insights obtained by physicists working on "Quantum Chaos" is a conjectural description of local statistics of the energy levels of simple quantum systems according to crude properties of the dynamics of classical limit, such as integrability, where one expects Poisson statistics, versus chaotic dynamics, where one expects Random Matrix Theory statistics. I will describe in general terms what these conjectures say and discuss recent joint work with Valentin Blomer, Jean Bourgain and Maksym Radziwill, in which we study the size of the minimal gap between the first N eigenvalues for one such simple integrable system, a rectangular billiard having irrational squared aspect ratio. For quadratic irrationalities, such as the golden ratio, we show that the minimal gap is about 1/N, consistent with Poisson statistics. In the case of the golden ratio, the problem involves some curious properties of the Fibonacci sequence.

Add to calendar

Add to calendar (.ics)