Skip to main content

Profile

Photo of Prof Bill Barnes

Prof Bill Barnes

Publications

Copyright Notice: Any articles made available for download are for personal use only. Any other use requires prior permission of the author and the copyright holder.

Copyright Notice: Any articles made available for download are for personal use only. Any other use requires prior permission of the author and the copyright holder.

| 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 | 1993 | 1992 | 1991 | 1990 | 1989 | 1988 | 1987 | 1986 | 1985 |

2022

2021

  • Vasista AB, Barnes WL. (2021) Strong Coupling of Multimolecular Species to Soft Microcavities.
  • Penketh H, Barnes WL, Bertolotti J. (2021) Ghost Image Processing. [PDF]
  • Penketh H, Bertolotti J, Barnes W. (2021) Ghost Image Processing dataset.
  • Barnes WL, Horsley SAR, Vos WL. (2021) 3 ways to view the local density of optical states, Optics InfoBase Conference Papers.
  • Vasista AB, Menghrajani KS, Barnes WL. (2021) Effect of molecular absorption and vibrational modes in polariton assisted photoemission from a layered molecular material.
  • Paniagua-Diaz AM, Barnes WL, Bertolotti J. (2021) Wavefront shaping to improve beam quality: converting a speckle pattern into a Gaussian spot.
  • Thomas PA, Menghrajani KS, Barnes WL. (2021) All-optical control of phase singularities using strong light-matter coupling.
  • Barnes WL, Horsley SAR, Vos WL. (2021) 3 Ways to View the Local Density of Optical States, 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021, DOI:10.1109/CLEO/Europe-EQEC52157.2021.9542791.
  • Menghrajani K, Mingzhou C, Dholakia K, Barnes W. (2021) Probing vibrational strong coupling of molecules with Wavelength-modulated Raman spectroscopy. [PDF]
  • Baraclough M. (2021) Metamaterial Analogues of Molecular Aggregate Systems. [PDF]
  • Mann C-R. (2021) Tunable Dirac Polaritons in Cavity-Embedded Metasurfaces. [PDF]
  • Subramanian S. (2021) A whispering gallery mode based biosensor platform for single enzyme analysis. [PDF]
  • Barnes W, Vasista A, Menghrajani K. (2021) Polariton assisted photoemission from a layered molecular material: Role of vibrational states and molecular absorption (dataset). [PDF]
  • Paniagua-Diaz AM, Barnes WL, Bertolotti J. (2021) Wavefront shaping to improve beam quality: converting a speckle pattern into a Gaussian spot. [PDF]
  • Baraclough M. (2021) Metamaterial analogues of strongly coupled molecular ensembles (dataset).
  • Thomas P, Menghrajani KS, Barnes WL. (2021) Cavity-Free Ultrastrong Light-Matter Coupling, DOI:10.1021/acs.jpclett.1c01695. [PDF]
  • Vasista AB, Menghrajani KS, Barnes WL. (2021) Effect of molecular absorption and vibrational modes in polariton assisted photoemission from a layered molecular material. [PDF]
  • Penketh H. (2021) Control of White Light Emission for Illumination and Imaging. [PDF]
  • Barnes B. (2021) Publisher Correction: Nanoimaging: Reflected phonons reveal strong coupling, Nature Photonics, volume 15, no. 5, pages 401-401, DOI:10.1038/s41566-021-00794-y.
  • Bohn J, Luk TS, Tollerton C, Hutchings SW, Brener I, Horsley S, Barnes WL, Hendry E. (2021) All-optical switching of an epsilon-near-zero plasmon resonance in indium tin oxide (vol 12, 1017, 2021), NATURE COMMUNICATIONS, volume 12, no. 1, article no. ARTN 1568, DOI:10.1038/s41467-021-22020-7. [PDF]
  • Barnes B. (2021) Reflected phonons reveal strong coupling, Nature Photonics, volume 15, no. 3, pages 169-170, DOI:10.1038/s41566-021-00773-3.
  • Bohn J, Luk TS, Tollerton C, Hutchings SW, Brener I, Horsley S, Barnes W, Hendry E. (2021) All-optical switching of an epsilon-near-zero plasmon resonance in indium tin oxide, Nature Communications, volume 12, DOI:10.1038/s41467-021-21332-y. [PDF]
  • Tan WJ, Thomas P, Barnes W, Luxmoore I. (2021) Single vs. double anti-crossing in the strong coupling between surface plasmons and molecular excitons (dataset), DOI:10.24378/exe.3023. [PDF]
  • Tan WJ, Thomas PA, Luxmoore IJ, Barnes WL. (2021) Single vs double anti-crossing in the strong coupling between surface plasmons and molecular excitons, The Journal of Chemical Physics, volume 154, no. 2, pages 024704-024704, DOI:10.1063/5.0037864. [PDF]

2020

  • Vasista AB, Barnes WL. (2020) Differential molecule-cavity mode coupling in soft-cavities.
  • Collins H, Barnes B, Sapienza R. (2020) The danger of going online only, PHYSICS WORLD, volume 33, no. 7, pages 19-19. [PDF]
  • Baraclough M, Hooper IR, Barnes WL. (2020) Direct observation of defect modes in molecular aggregate analogs, Physical Review B, volume 102, no. 22, article no. 224105, DOI:10.1103/physrevb.102.224105. [PDF]
  • Baraclough M, Hooper I, Barnes W. (2020) Direct observation of defect modes in molecular aggregate analogues-data. [PDF]
  • Vasista AB, Barnes W. (2020) Molecular Monolayer Strong Coupling in Dielectric Soft Microcavities. [PDF]
  • Menghrajani KS, Barnes WL. (2020) Strong Coupling beyond the Light-Line, ACS Photonics, volume 7, no. 9, pages 2448-2459, DOI:10.1021/acsphotonics.0c00552.
  • Menghrajani K, Barnes W. (2020) Strong coupling beyond the light-line. [PDF]
  • Thomas P, Tan WJ, Fernandez H, Barnes WL. (2020) A new signature for strong light-matter coupling using spectroscopic ellipsometry (dataset). [PDF]
  • Thomas PA, Tan WJ, Fernandez HA, Barnes WL. (2020) A new signature for strong light-matter coupling using spectroscopic ellipsometry. [PDF]

2019

  • Fernandez HA, Withers F, Russo S, Barnes WL. (2019) Electrically tuneable exciton-polaritons through free electron doping in monolayer WS$_2$ microcavities.
  • Fernandez HA, Withers F, Russo S, Barnes WL. (2019) Electrically tuneable exciton energy exchange between spatially separated 2-dimensional semiconductors in a microcavity.
  • Mignuzzi S, Cambiasso J, Vezzoli S, Horsley SAR, Barnes WL, Maier SA, Sapienza R. (2019) Dielectric nanocavities with enhanced local density of states, Conference on Lasers and Electro-Optics, DOI:10.1364/cleo_qels.2019.ff2b.3.
  • Barnes WL, Horsley SAR, Vos WL. (2019) Classical antennae, quantum emitters, and densities of optical states.
  • Vasista AB, Barnes WL. (2019) Molecular monolayer strong coupling in dielectric soft microcavities.
  • Menghrajani K. (2019) Strong Coupling of Molecular Vibrational Resonances. [PDF]
  • Vasista AB, Barnes WL. (2019) Molecular monolayer strong coupling in dielectric soft microcavities. [PDF]
  • Tollerton C. (2019) Nonlinear optical effects in two dimensional and thin film materials. [PDF]
  • Baraclough M, Seetharaman SS, Hooper IR, Barnes WL. (2019) Metamaterial Analogues of Molecular Aggregates, ACS Photonics, volume 6, no. 11, pages 3003-3009, DOI:10.1021/acsphotonics.9b01208. [PDF]
  • Penketh H, Bertolotti J, Barnes WL. (2019) Optimal position of an emitter in a wavelength-scale parabolic reflector, Applied Optics, volume 58, no. 29, pages 7957-7957, DOI:10.1364/ao.58.007957. [PDF]
  • Barnes WL, Horsley SAR, Vos WL. (2019) Classical antennae, quantum emitters, and densities of optical states, J. Opt, volume 22, pages 1-80. [PDF]
  • Fernandez H. (2019) Optical and Electronic Study of Hybrid Light-Matter States. [PDF]
  • Menghrajani KS, Nash GR, Barnes WL. (2019) Vibrational Strong Coupling with Surface Plasmons and the Presence of Surface Plasmon Stop Bands, ACS Photonics, volume 6, no. 8, pages 2110-2116, DOI:10.1021/acsphotonics.9b00662. [PDF]
  • Mignuzzi S, Cambiasso J, Vezzoli S, Horsley SAR, Barnes WL, Maier SA, Sapienza R. (2019) Dielectric nanocavities with enhanced local density of states, 2019 Conference on Lasers and Electro-Optics, CLEO 2019 - Proceedings, DOI:10.23919/CLEO.2019.8750322.
  • Barnes WL, Fernandez H, Withers F, Russo S. (2019) Electrically Tuneable Exciton-Polaritons through Free Electron Doping in Monolayer WS2 Microcavities, Advanced Optical Materials, DOI:10.1002/adom.201900484. [PDF]
  • Barnes WL. (2019) Vibrational strong coupling with surface plasmons and the presence of surface plasmon stop bands (dataset). [PDF]
  • Mignuzzi S, Cambiasso J, Vezzoli S, Horsley SAR, Barnes WL, Maier SA, Sapienza R. (2019) Dielectric nanocavities with enhanced local density of states, Optics InfoBase Conference Papers, volume Part F128-CLEO_QELS 2019, DOI:10.1364/CLEO-QELS.2019.FF2B.3.
  • Barnes W, Fernandez H, Russo S, Withers F. (2019) Electrically tuneable exciton energy exchange between spatially separated 2-dimensional semiconductors in a microcavity. [PDF]
  • Barnes WL, Menghrajani K, Nash G, Fernandez H. (2019) Hybridization of multiple vibrational modes via strong coupling using confined light fields*. [PDF]
  • Barnes WL, Fernandez H, Russo S, Withers F. (2019) Electrically tuneable exciton-polaritons through free electron doping in monolayer WS₂ microcavities. [PDF]
  • Mignuzzi S, Vezzoli S, Horsley SAR, Barnes WL, Maier SA, Sapienza R. (2019) Nanoscale Design of the Local Density of Optical States, Nano Lett, volume 19, no. 3, pages 1613-1617, DOI:10.1021/acs.nanolett.8b04515. [PDF]

2018

2017

  • Shahnazaryan VA, Saroka VA, Shelykh IA, Barnes WL, Portnoi ME. (2017) Strong Light-Matter Coupling in Carbon Nanotubes as a Route to Exciton Brightening.
  • Mann C-R, Sturges TJ, Weick G, Barnes WL, Mariani E. (2017) Manipulating type-I and type-II Dirac polaritons in cavity-embedded honeycomb metasurfaces.
  • Keatley PS, Loughran THJ, Hendry E, Barnes WL, Hicken RJ, Childress JR, Katine JA. (2017) A platform for time-resolved scanning Kerr microscopy in the near-field.
  • Barnes WL. (2017) Organic materials instead of metals for plasmonics, Optics InfoBase Conference Papers, volume Part F81-EQEC 2017.
  • Paniagua-Diaz AM, Barnes WL, Bertolotti J. (2017) Enhancement of optical energy delivery through strongly scattering media by wavefront shaping techniques, Optics InfoBase Conference Papers, volume Part F82-CLEO_Europe 2017.
  • Fernandez H, Russo S, Barnes WL. (2017) Design of strong-coupling microcavities for optoelectronic applications, Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC, 2017 Conference on), Munich, Germany, 25th - 29th Jun 2017, IEEE Xplore Digital Library, DOI:10.1109/CLEOE-EQEC.2017.8087607.
  • Fernandez H, Russo S, Barnes WL. (2017) Modification of charge carrier mobility by strong light-matter coupling in organic and inorganic semiconductors, Frontiers in Optics 2017, Washington Dc, United States, 18th - 21st Sep 2017, OSA Technical Digest (online), DOI:10.1364/FIO.2017.JW3A.59.
  • Shahnazaryan VA, Saroka VA, Shelykh IA, Barnes WL, Portnoi ME. (2017) Strong Light-Matter Coupling in Carbon Nanotubes as a Route to Exciton Brightening, ACS Photonics, volume 6. [PDF]
  • Keatley PS, Loughran THJ, Hendry E, Barnes WL, Hicken RJ, Childress JR, Katine JA. (2017) A platform for time-resolved scanning Kerr microscopy in the near-field. [PDF]
  • Mann C-R, Sturges TJ, Weick G, Barnes WL, Mariani E. (2017) Manipulating type-I and type-II Dirac polaritons in cavity-embedded honeycomb metasurfaces, Nature Communications 9, Article number: 2194 (2018). [PDF]
  • Kivshar YS, Barnes WL, Hess O, Zheludev N. (2017) New horizons for nanophotonics, Philos Trans A Math Phys Eng Sci, volume 375, no. 2090, DOI:10.1098/rsta.2016.0380. [PDF]

2016

  • Choi W, Yin C, Hooper IR, Barnes WL, Bertolotti J. (2016) Absence of Anderson localization in certain random lattices.
  • Barnes B. (2016) Peer-review thoughts, PHYSICS WORLD, volume 29, no. 3, pages 21-21, DOI:10.1088/2058-7058/29/3/25. [PDF]
  • Choi W, Yin C, Hooper IR, Barnes WL, Bertolotti J. (2016) Absence of Anderson localization in certain random lattices, Phys. Rev. E, volume 96. [PDF]
  • Barnes WL, Gentile MJ. (2016) Hybridised exciton-polariton resonates in core-shell nanoparticles, Journal of Optics. [PDF]
  • Barnes WL. (2016) Particle plasmons: Why shape matters, American Journal of Physics, volume 84, no. 8, pages 593-601, DOI:10.1119/1.4948402. [PDF]
  • Humphrey AD, Meinzer N, Starkey TA, Barnes WL. (2016) Surface Lattice Resonances in Plasmonic Arrays of Asymmetric Disc Dimers, ACS Photonics, volume 3, no. 4, pages 634-639, DOI:10.1021/acsphotonics.5b00727. [PDF]
  • Barnes. (2016) Excitonic Optical Tamm States: a step towards a full molecular- dielectric photonic integration (Dataset). [PDF]
  • Humphrey AD, Barnes WL. (2016) Plasmonic surface lattice resonances in arrays of metallic nanoparticle dimers, Journal of Optics, volume 18, no. 3, pages 035005-035005, DOI:10.1088/2040-8978/18/3/035005. [PDF]

2015

  • Núñez-Sánchez S, López-García M, Murshidy MM, Abdel-Hady AG, Serry MY, Adawi AM, Rarity JG, Oulton R, Barnes WL. (2015) Evidence of Excitonic Optical Tamm States using Molecular Materials.
  • Gentile MJ, Horsley SAR, Barnes WL. (2015) Localized exciton-polariton modes in dye-doped nanospheres: a quantum approach.
  • Gentile MJ, Horsley SAR, Barnes WL. (2015) Localized exciton-polariton modes in dye-doped nanospheres: A quantum approach, Journal of Optics (United Kingdom), volume 18, no. 1, DOI:10.1088/2040-8978/18/1/015001. [PDF]
  • Barnes WL. (2015) Ensemble strong coupling, New Journal of Physics, volume 17, no. 8, DOI:10.1088/1367-2630/17/8/081001. [PDF]
  • Humphrey AD, Meinzer N, Barnes WL. (2015) A Study in Asymmetry: Resonances in Arrays of Asymmetric Disc Dimers (Invited), PIERS 2015, Prague, Czech Republic, 6th - 9th Jul 2015. [PDF]
  • Meinzer N, Humphrey AD, Barnes WL. (2015) Asymmetric dot dimers – optical properties and interactions, Nanometa 2015, Seefeld In Tirol, Austria, 5th - 8th Jan 2015. [PDF]
  • Törmö P, Barnes WL. (2015) Strong coupling between surface plasmon polaritons and emitters: A review, Reports on Progress in Physics, volume 78, no. 1, DOI:10.1088/0034-4885/78/1/013901. [PDF]

2014

2013

2012

  • Khrapach I, Withers F, Bointon TH, Polyushkin DK, Barnes WL, Russo S, Craciun MF. (2012) Novel highly conductive and transparent graphene based conductors.
  • Weick G, Woollacott C, Barnes WL, Hess O, Mariani E. (2012) Dirac-like plasmons in honeycomb lattices of metallic nanoparticles.
  • Shaw AM, Olkhov RV, Jerdev A, Barnes WL. (2012) Plasmon biophotonic arrays for multi-analyte biosensing in complex media, Nanoplasmonic Sensors, 127-151, DOI:10.1007/978-1-4614-3933-2_6.
  • Khrapach I, Withers F, Bointon TH, Polyushkin DK, Barnes WL, Russo S, Craciun MF. (2012) Novel highly conductive and transparent graphene-based conductors, Adv Mater, volume 24, no. 21, pages 2844-2849, DOI:10.1002/adma.201200489. [PDF]

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

1999

1998

1997

1996

1995

1994

1993

1992

1991

1990

1989

1988

1987

1986

1985

Showing 310 publications from Symplectic.