Skip to main content


Thursday 22 Mar 2018Isomorphism problems for Hopf-Galois structures on separable field extensions

Paul Truman - Keele University

H103 15:30-16:30

Let L/K be a finite extension of fields. A Hopf-Galois structure on L/K consists of a Hopf algebra H together with a certain type of action of H on L. In the case that L/K is an extension of local or global fields, Hopf-Galois structures can provide a variety of contexts in which we can ask module theoretic questions about the extension and its fractional ideals. In the case that L/K is separable, a theorem of Greither and Pareigis classifies the Hopf-Galois structures admitted by L/K and shows that the Hopf algebras that occur are all twisted forms of group algebras. We establish criteria for two such Hopf algebras to be isomorphic as Hopf algebras, and study the more delicate question of when they are isomorphic as K-algebras.

Add to calendar

Add to calendar (.ics)