

A Brief Tutorial for the GALAXY Method

Qi Wang1
Dragan A. Savić2
Zoran Kapelan2

1School of Civil and Transportation Engineering, Guangdong University of Technology
2Centre for Water Systems, University of Exeter

 wangqiguangzhou@163.com
20th January, 2017

Contents
1. Introduction ... - 2 -
2. Pseudo-Code of GALAXY ... - 4 -
3. How to Use GALAXY.. - 5 -
4. Examples ... - 7 -
5. Efficiency Issues ... - 9 -
Major References .. - 11 -

A Brief Tutorial for the GALAXY Method version 1.0.1

- 2 -

1. Introduction

GALAXY stands for Genetically Adaptive Leaping Algorithm for approXimation and
diversitY (GALAXY), which is a hybrid optimiser for dealing with the
multi-objective design of Water Distribution Systems (WDSs). The GALAXY method
follows the generational framework of many state-of-the-art multi-objective
evolutionary algorithms (MOEAs), such as the non-dominated sorting genetic
algorithm II (NSGA-II) [Deb et al., 2002], and implements six search operators
simultaneously to improve the effectiveness and efficiency. Several important
strategies are also included to maintain a better balance between the global and local
search.

The GALAXY method includes four key steps, which are Initialisation, Selection,
Generation and Replacement. Firstly, an initial population is randomly generated. The
solutions are then evaluated using the objective functions. Secondly, the parents are
selected from the population and offspring are produced. Then, the fitness of the
offspring is evaluated using the objective functions. If some of them dominate the
members of the current population, the dominated individuals are replaced by these
offspring. This procedure is implemented repeatedly until a certain stopping criterion
is satisfied.

The multi-objective design of WDSs is a typical combinatorial optimisation problem,
which is NP-hard and computationally intensive. Many design problems only
consider integer variables, such as the pipe sizing and/or pump scheduling. Therefore,
the search space, in terms of both objective and decision spaces, is vast, discrete,
multi-modal and normally constrained.

To fit the needs for solving discrete, combinatorial optimisation problems, GALAXY
adopts the integer coding scheme and eliminates majority of individual parameters of
those search operators initially developed for solving continuous, real-valued
optimisation problems. In particular, the turbulence factor (TF), differential evolution
(DE), simulated binary crossover for integers (SBXI), uniform mutation (UM),
Gaussian mutation (GM) and dither creeping (DC) are employed and tailored in the
GALAXY method. These operators are used in a genetically-adaptive way, in which
an equal number of individuals (i.e., 1/6 of population size) are generated using each
operator concurrently; and afterwards, the number of individuals that is allowed to
produce by each search operator is determined based on the reproductive rate (ratio of
the children alive to the children created) in the previous generation [Vrugt and
Robinson, 2007].

When a search operator fails to contribute even a single individual in the current
population, the one-child policy is applied in the next round to release maximum
reproductive chances. Specifically, it borrows one opportunity from the topmost
operator in the previous round. If two of six operators fail, each of them borrows one
opportunity from the two topmost operators, and so on. Therefore, the most successful

A Brief Tutorial for the GALAXY Method version 1.0.1

- 3 -

operator is always favored by getting the highest number of offspring in the
reproduction process, and no operator is completely discarded even though it exhibits
the worst performance.

In the Replacement process, which actually steers the population towards the
Pareto-optimal front, a hybrid replacement strategy is implemented. Generally
speaking, the Pareto-dominance [Deb et al., 2002] and ε-dominance concepts
[Laumanns et al., 2002] are combined to screen the candidates from the solutions with
the topmost rank. When the number of solutions in the top rank is less than the
population size, the Pareto-dominance based replacement is executed, with a
secondary ranking procedure according to the crowding distance. However, if the
number of individuals with the top rank exceeds the population size, the
ε-replacement is carried out instead, in which the non-dominated solutions in the first
front are sorted once again based on the ε-dominance concept. As a result, the
ε-non-dominated solutions are copied into the next population. If there are still free
spaces left, some ε-dominated solutions are also selected which have smaller
distances to the ideal global optima.

Besides the aforementioned hybrid replacement strategy, GALAXY also implements
some other ones, including the genetically adaptive strategy (which has been
described briefly), the global information sharing [Vrugt and Robinson, 2007] and the
duplicates handling strategies. They all play an important role in improving the
capability of the GALAXY method and maintaining a well converged and distributed
population. Main features of GALAXY include:

 Tailored operators for solving multi-objective WDS design problems;
 No parameters to be fine-tuned (requiring only popSize1 and NFEs2);
 Structured problem formulation, easily extended to other cases;
 Robust and easy-to-use.

In summary, GALAXY is a new and efficient hybrid MOEA for solving the discrete,
multi-objective WDS design problems. The practical value of GALAXY lies in the
fact that it alleviates the parameterisation problem of MOEAs to great extent.
Therefore, it is envisaged that this hybrid optimiser will benefit the researchers and
practitioners in the water community.

1 popSize: size of population.
2 NFEs: number of function evaluations

A Brief Tutorial for the GALAXY Method version 1.0.1

- 4 -

2. Pseudo-Code of GALAXY

GALAXY Method

Inputs: population size (N), number of function evaluations (NFEs)

Outputs: Pareto approximation set (AS), Pareto approximation front (AF)

Initialisation:

Generate the initial population of N individuals randomly in the specified variable domains.

Initialise the quotas* of six search operators equally such that (NN
J J  

6

1
).

Evaluation:

Evaluate the objective function values of the initial population (by using hydraulic

simulations).

Rank the population using the non-dominated sorting procedure [Deb et al., 2002].

Update the current number of function evaluations (i.e., set I = N).

While I <= NFEs

Selection:

Choose all the members in the current population for the Generation step.

Generation:

For J = 1 to 6

Produce N candidate solutions from the current population using operator J.

Select NJ offspring randomly from candidate solutions and save them to the offspring

set.

End

Check whether the solutions in the offspring set are within the specified variable ranges.

Evaluation:

Evaluate the objective function values of the solutions in the offspring set.

Replacement:

Combine the current population and the offspring set as an intermediate population of size

2N.

Implement the duplicates handling strategy.

Rank the intermediate population using the non-dominated sorting procedure.

If the number of individuals in the top rank <= N

Implement the normal replacement via the crowded-comparison operator [Deb et al.,

2002].

Else

Implement the ε-replacement strategy.

End

Form the next population of size N.

Update the quotas* of search operators according to their contributions to the next

population.

Update the current number of function evaluations (i.e., set I = I + N).

End

Set the current population as AS.

Set the objective function values of the current population as AF.

Note: *A quota of a search operator refers to the number of offspring it is allowed to produce for

the next generation.

A Brief Tutorial for the GALAXY Method version 1.0.1

- 5 -

3. How to Use GALAXY

To apply the GALAXY method to your own design problems, or other combinatorial
optimisation problems with discrete decision variables, it is suggested to follow the
three steps specified below.

 Step 1: define the optimisation problem in a structured way;
 Step 2: determine the parameters of GALAXY, which are N and NFEs;
 Step 3: specify the options of GALAXY or use the default settings.

In Step 1, the problem to be solved is formulated to a standard objective function with
two inputs and two outputs in a separate M-file. The inputs include a vector of
decision variables and a scalar of NFEs. The outputs contain a vector of the objective
values and a scalar of the amount of constraint violation (see Figure 1). Then, this
problem formulation should be registered (linked) in the M-file named
objectiveFunction. This function has the same inputs and outputs as shown in Figure 1,
and includes an additional input of structure array, called problemDef, containing the
information of problem definition. The problemDef is the only output of another
M-file named problemArchive, in which the meta-data of the problem should be
registered as well. The meta-data specify the name and index of the problem, the
number of objectives and decision variables, whether the problem is constrained or
not, the lower and upper bounds of each decision variable, and the directory of the
best-known or true Pareto-optimal front, if available. By following this structured
problem formulation, the GALAXY method is able to identify the problem definition
and solve it accordingly. If the efficiency of execution is of particular interest, please
refer to Section 5: Efficiency Issues for a resolution. Note that the procedures used to
open and close the hydraulic solver can be put either inside or outside the problem
formulation. The former style is adopted for the example shown in Section 4.

Figure 1. Prototype of Problem Formulation

In Step 2, the user should determine the appropriate settings for N and NFEs, which
are the only required parameters for the GALAXY method. There is no universally
accepted rule for selecting these two parameters. However, generally speaking, a
larger population size (i.e., N) and computational budget (i.e., NFEs) should be
applied to the problems with more decision variables and broader ranges, which
increase the search space exponentially.

In Step 3, the user needs to specify some options when working with the GALAXY
method. A list of such options and the corresponding effects are summarised in Table
1.

[objs,constrs]=ProblemName(vars,NFEs)

A Brief Tutorial for the GALAXY Method version 1.0.1

- 6 -

Table 1. Options of the GALAXY method
Options Settings Effect

InitialisationMethod {'LHS' | 'EXT' | 'INT'}

choose the initialisation method

among Latin hypercube sampling,

uniformly distributed random

integers, or loading the initial

population from an external file

SearchOperators {'TF','DE','SBXI','UM','GM','DC'}

decide the combination of search

operators; note that the names of the

selected operators should be included

in the curly brackets

RangeOfMutation (0,1)

default is 0.7; this option turns out to

have minor influence on GALAXY’s

performance

UseMex {'Yes' | 'No'}

choose 'Yes' if an MEX-file has been

compiled to enjoy a substantial

speedup; otherwise use the generic

functions by setting 'No'

RecordPerformance {'Yes' | 'No'}

whether to record GALAXY’s

performance during optimisation; in

case that a reference front is not

available, set this option to 'No'

PerformanceIndicators {'GD','HV','EI','EP'}
choose the performance indicator(s) to

monitor; suggest to keep all of them

PlotDuringOptimisation {'Yes' | 'No'}

choose 'Yes' if you want to see the

real-time progress of GALAXY in a

scatter plot; choose 'No' to improve

the efficiency

ScatterSize
area of each marker (unit:

points^2)
set the marker size, default is 10

ScatterColor
short or long name of color

specification
set the marker color, default is 'blue'

Before calling the main function GALAXY within the command window of Matlab,
please make sure that all the items in the following checklist have been ticked.

 The EPANET input file (*.inp) has been placed in the current folder where
GALAXY exists.
 The objective function developed (*.m) has been placed in the current folder.
 The dynamic link library (DLL) of EPANET Programmer’s Toolkit (*.dll) and
the associated header file (*.h) have been placed in the current folder. If the
MEX-file is used, copy the compiled program (*.mexw32 or *.mexw64) to the
current folder.

A Brief Tutorial for the GALAXY Method version 1.0.1

- 7 -

4. Examples

Here, a very simple example, known as the bi-objective design of Two-loop network,
is demonstrated to facilitate the applications of GALAXY to other user-specified
problems. The objectives are to minimise the total cost of pipes and to maximise the
network resilience, which is a surrogate indicator of network reliability [Prasad and
Park, 2004]. Please refer to Wang et al. [2015] for details of the problem formulation.

Figure 2. Sample Sections of the Problem Formulation of Two-loop Network
The sample sections shown above include two major subroutines besides the header
part of the objective function. The first subroutine opens the hydraulic solver just once
during optimisation, and the second subroutine closes the solver eventually. Note that
the variables are added by 1 to comply with the 1-based index rule in Matlab.

function [objs,constrs]=TLN2obj_Mat(vars,NFEs)

% This is an example of the bi-objective design of Two-loop network.

% Input Vars:

% (1) vars: decision variables (a 1-by-8 vector);

% (2) NFEs: number of function evaluations (scalar);

% Output Vars:

% (1) objs: objective values (a 1-by-2 vector);

% (2) constrs: corresponding constraint violation (scalar);

--

global numOfEvaluation

if isempty(numOfEvaluation)

 numOfEvaluation=1;

else

 numOfEvaluation=numOfEvaluation+1;

end

% open the hydraulic solver

if numOfEvaluation==1

 if ~libisloaded('epanet2')

 loadlibrary('epanet2.dll','epanet2.h');

 end

 calllib('epanet2','ENopen','TLN.inp','reportFile.rpt','');

 calllib('epanet2','ENopenH');

 calllib('epanet2','ENresetreport');

 calllib('epanet2','ENsetreport','MESSAGES NO');

 disp('The INP file has been opened.');

end

% convert the decision variables to integers

vars=floor(vars+1);

--

% close the hydraulic solver

if numOfEvaluation==NFEs

 calllib('epanet2','ENcloseH');

 calllib('epanet2','ENclose');

 disp('The INP file has been closed.');

 numOfEvaluation=0;

 if libisloaded('epanet2')

 unloadlibrary('epanet2');

 end

end

A Brief Tutorial for the GALAXY Method version 1.0.1

- 8 -

When the problem has been coded and tested, register it within the M-files named
objectiveFunction and problemArchive, respectively (as shown in Figures 3-4).

Figure 3. Register the Problem within objectiveFunction.m

Figure 4. Register the Problem within problemArchive.m
Now, it is ready to run GALAXY by typing the following command after the prompt.

Figure 5. Screenshot of the Execution of GALAXY

elseif strcmpi(options.UseMex,'No') % using the generic functions

 if problemIndex==2

 for i=1:popSize

 [objs(i,:),constrs(i)]=TLN2obj_Mat(vars(i,:),NFEs);

 end

 end

end

elseif problemIndex==2 || strcmpi(problemName,'TLN')

 % -----Two-Loop Network-----

 problemDef.Index=2;

 problemDef.Name='TLN';

 problemDef.NumOfObj=2;

 problemDef.NumOfVar=8;

 problemDef.IsConstrained=1;

 problemDef.VarLowerBound=0*ones(1,8);

 problemDef.VarUpperBound=13*ones(1,8);

 load([pwd '/benchmark/best_known_PF/truePF_TLN'],'ParetoFront');

 problemDef.PF=ParetoFront;

A Brief Tutorial for the GALAXY Method version 1.0.1

- 9 -

5. Efficiency Issues

If the problem to be solved is very complicated, for instance, many decision variables
involved, or time-consuming hydraulic simulations required, it is probably worth
considering speeding up the execution of optimisation via the Matlab executable
(MEX) file (or function). MEX files enable the invocation of subroutines created in C,
C++, or Fortran from the MATLAB command line as built-in functions. These
programs, called binary MEX-files, are dynamically linked with the MATLAB
interpreter. Therefore, one can take advantages of both languages, making the
time-consuming routines be implemented outside Matlab and constructing other
routines quickly within Matlab.

Based on the preliminary analyses, it is found that the hydraulic simulation accounts
for the majority of the time elapsed for solving the multi-objective WDS design
problems. Therefore, the computational overhead when dealing with such kind of
problems (especially for larger problems) can be effectively reduced by calling the
MEX-files, which encapsulate objective functions involving hydraulic simulations
written in C language.

The sample code for compiling such a MEX-file for solving the Two-loop Network
problem is presented in Figure 6, which includes the MEX-file interface as well as
part of the problem formulation (minimise total cost vs. maximise network resilience).

To compile the MEX-files on your computer, please take the following steps
assuming that the 64-bit Windows OS is used:

1. Copy the library file [epanet2.lib] to the directory like [C:\Program
Files\Microsoft Visual Studio 10.0\VC\lib];

2. Call [mex –setup] in Matlab to configure the complier;
3. Choose [Microsoft Visual C++ 2010 Express] or similar complier rather than

the default one [LCC] (you may need to download the free compiler from the
official site of Microsoft);

4. Call [mex -v TLN2obj.c -L"C:\Program Files\Microsoft Visual Studio
10.0\VC\lib" -lepanet2] to build the MEX-file;

5. The DLL file [epanet2.dll] should be placed in the same folder where the
MEX-file exists to make it work;

6. Pay attention to the format of function usage, it should be called like "[objs,
constrs]=TLN2obj(vars, NFE)" (without double quotes) in which "vars"
represents a 1-by-M vector (M denoting the number of decision variables) and
"NFE" represents the total number of function evaluations.

A Brief Tutorial for the GALAXY Method version 1.0.1

- 10 -

Figure 6. Sample code for compiling the MEX-file for the Two-loop Network

#include <math.h>

#include "mex.h"

#include "epanet2.h"

void TLN2obj(double *vars, double *objs, double *constrs, int NFE) {

* HERE IS THE CODE FOR COMPUTING OBJECTIVE VALUES. *

* HYDRAULIC SIMULATION IS ALSO IMPLEMENTED IN THIS FUNCTION. *

 objs[0] = totalCost/1000000.0; // $ => $ MM

 objs[1] = -networkResilience;

 constrs[0] = -(pressureViolation+errorCode);

 return;

}

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

 double *vars,*objs,*constrs;

 int NFE;

 /* Check for proper number of arguments. */

 if(nrhs!=2)

 {

 mexErrMsgIdAndTxt("MATLAB:TLN2obj:invalidNumInputs", "Two input required.");

 }

 else if(nlhs>2)

 {

 mexErrMsgIdAndTxt("MATLAB:TLN2obj:maxlhs", "Too many output arguments.");

 }

 /* Create matrix for the return argument. */

 plhs[0] = mxCreateDoubleMatrix((mwSize)1, (mwSize)2, mxREAL);

 plhs[1] = mxCreateDoubleMatrix((mwSize)1, (mwSize)1, mxREAL);

 /* Assign pointers to each input and output. */

 vars = mxGetPr(prhs[0]);

 NFE = mxGetScalar(prhs[1]);

 objs = mxGetPr(plhs[0]);

 constrs = mxGetPr(plhs[1]);

 /* Call the TLN2obj subroutine. */

 TLN2obj(vars, objs, constrs, NFE);

}

A Brief Tutorial for the GALAXY Method version 1.0.1

- 11 -

Major References

Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan (2002), A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II, IEEE T. Evolut. Comput., 6(2),
182-197, doi: 10.1109/4235.996017.

Laumanns, M., L. Thiele, K. Deb, and E. Zitzler (2002), Combining convergence and
diversity in evolutionary multiobjective optimization, Evol. Comput., 10(3),
263-282, doi:10.1162/106365602760234108.

Prasad, T. D., and N.-S. Park (2004), Multiobjective Genetic Algorithms for Design of
Water Distribution Networks, J. Water Res. Pl-ASCE, 130(1), 73-82,
doi:10.1061/(ASCE)0733-9496(2004)130:1(73).

Vrugt, J. A., and B. A. Robinson (2007), Improved Evolutionary Optimization from
Genetically Adaptive Multimethod Search, P. Natl. Acad. Sci. USA, 104(3),
708-711, doi:10.1073/pnas.0610471104.

Wang, Q., M. Guidolin, D. Savić, and Z. Kapelan (2015), Two-Objective Design of
Benchmark Problems of Water Distribution System via MOEAs: Towards the
Best-Known Approximation to the True Pareto Front, J. Water Res. Pl-ASCE,
141(3), doi:10.1061/(ASCE)WR.1943-5452.0000460.

