Multi-Objective Routing Optimisation for Battery-Powered Wireless Sensor Mesh Networks

Alma Rahat
Richard Everson
Jonathan Fieldsend

Computer Science
University of Exeter
United Kingdom

Genetic and Evolutionary Computation Conference, July 2014
Wireless Sensors

- Autonomous devices
- Environmental or process monitoring
 - Industrial
 - Heritage
 - Pharmaceuticals
 - Health-care
- Battery powered
 - Monitor locations that are difficult to access
 - Typically left unattended for long periods of time
Point-to-Point Networks

- Sensors and Gateway
Point-to-Point Networks

- Sensors and Gateway
- Direct connections between Sensor and Gateway
Point-to-Point Networks

- Sensors and Gateway
- Direct connections between Sensor and Gateway

Challenges
- Limited Range
Point-to-Point Networks

- Sensors and Gateway
- Direct connections between Sensor and Gateway

Challenges
- Limited Range
- Vulnerable to dynamic radio environment
Mesh Networks

- Sensor nodes relay their adjacent nodes’ data to the gateway
Mesh Networks

- Sensor nodes relay their adjacent nodes’ data to the gateway
 - Range extension
Mesh Networks

- Sensor nodes relay their adjacent nodes’ data to the gateway
 - Range extension
 - Alternative routes - resilience to changes in radio environment
Mesh Networks

- Sensor nodes relay their adjacent nodes’ data to the gateway
 - Range extension
 - Alternative routes - resilience to changes in radio environment
Mesh Networks

- Sensor nodes relay their adjacent nodes’ data to the gateway
 - Range extension
 - Alternative routes - resilience to changes in radio environment

Maximise

- Average battery lifetime
- Minimum time before one node expires
Routing Scheme

- Network connectivity map

A route for node v_3: $S_3 = \langle v_3, v_1, v_G \rangle$

A routing scheme for the network: $R = \{S_1, S_2, S_3, S_4, S_5\}$
Routing Scheme

- Network connectivity map
- A route for node v_3:

$$S_3 = \langle v_3, v_1, v_G \rangle$$
Routing Scheme

- Network connectivity map
- A route for node v_3:
 \[S_3 = \langle v_3, v_1, v_G \rangle \]
- A routing scheme for the network:
 \[\mathcal{R} = \{ S_1, S_2, S_3, S_4, S_5 \} \]
Node Costs

- Node’s cost due to a routing scheme \mathcal{R}:

$$C_1 = T_{1,G} + (R_{1,2} + T_{1,G}) + (R_{1,3} + T_{1,G})$$

For a transmission from v_i to v_j:
- $T_{i,j}$ Transmission cost at node v_i
- $R_{j,i}$ Reception cost at node v_j
Node Costs

- Node’s cost due to a routing scheme \mathcal{R}:

$$C_1 = T_{1,G} + (R_{1,2} + T_{1,G}) + (R_{1,3} + T_{1,G})$$

For a transmission from v_i to v_j:

- $T_{i,j}$ Transmission cost at node v_i
- $R_{j,i}$ Reception cost at node v_j
Node Costs

- Node’s cost due to a routing scheme \(R \):

\[
C_1 = T_{1,G} + (R_{1,2} + T_{1,G}) + (R_{1,3} + T_{1,G})
\]

For a transmission from \(v_i \) to \(v_j \):
- \(T_{i,j} \) Transmission cost at node \(v_i \)
- \(R_{j,i} \) Reception cost at node \(v_j \)
Node Costs

- Node’s cost due to a routing scheme \mathcal{R}:

$$C_1 = T_{1,G} + (R_{1,2} + T_{1,G}) + (R_{1,3} + T_{1,G})$$

For a transmission from v_i to v_j:

$T_{i,j}$ Transmission cost at node v_i

$R_{j,i}$ Reception cost at node v_j
Objectives

- Lifetime for node v_i:

$$L_i(R) = \frac{Q_i}{E_i + C_i}$$

- Q_i: battery charge
- E_i: quiescent current
- C_i: radio communication current
Objectives

- Lifetime for node v_i:

$$L_i(\mathcal{R}) = \frac{Q_i}{E_i + C_i}$$

Q_i battery charge
E_i quiescent current
C_i radio communication current

Maximise

Average lifetime:
$$f_1(\mathcal{R}) = \frac{1}{n} \sum_{i=1}^{n} L_i(\mathcal{R})$$

Minimum lifetime:
$$f_2(\mathcal{R}) = \min_{i \in [1,n]} L_i(\mathcal{R})$$
Search Space Size

- How big is the search space?

Number of possible routing schemes: \(n \prod_{i=1}^{a_i} \)

- Limit the number of paths available to each node by using \(k \)-shortest paths algorithm [Yen, 1972; Eppstein, 1999]

Maximum search space size: \(k n \)

Quicker approximation of Pareto Front

Rahat, Everson & Fieldsend
MORO for Battery Powered WSMN
GECCO, July 2014 8 / 13
Search Space Size

- Number of possible loopless paths for node v_3: 1

Limit the number of paths available to each node by using k-shortest paths algorithm [Yen, 1972; Eppstein, 1999].

Maximum search space size: $k n$
Number of possible loopless paths for node v_3: 2

Maximum search space size: $k n$

Quicker approximation of Pareto Front

Limit the number of paths available to each node by using k-shortest paths algorithm [Yen, 1972; Eppstein, 1999]

Rahat, Everson & Fieldsend
MORO for Battery Powered WSMN
GECCO, July 2014
Search Space Size

- Number of possible loopless paths for node v_3: 3
Search Space Size

- Number of possible loopless paths for node v_3: 4
Number of possible loopless paths for node v_3: 5
Search Space Size

- Number of possible loopless paths for node v_3: 6
Search Space Size

- Number of possible loopless paths for node v_3: 7

Limit the number of paths available to each node by using k-shortest paths algorithm [Yen, 1972; Eppstein, 1999]
Search Space Size

- Number of possible loopless paths for node v_3: 7
- Number of possible routing schemes:

$$\prod_{i=1}^{n} a_i$$

a_i: Number of available routes from v_i to v_G
Search Space Size

- Number of possible loopless paths for node v_3: 7
- Number of possible routing schemes:

$$\prod_{i=1}^{n} a_i$$

a_i: Number of available routes from v_i to v_G

- 4032 solutions
Search Space Size

- Number of possible loopless paths for node v_3: 7
- Number of possible routing schemes:

$$\prod_{i=1}^{n} a_i$$

a_i: Number of available routes from v_i to v_G

- 243 solutions
Search Space Size

- Number of possible loopless paths for node v_3: 7
- Number of possible routing schemes:

$$\prod_{i=1}^{n} a_i$$

- a_i: Number of available routes from v_i to v_G
- 243 solutions

- Limit the number of paths available to each node by using k-shortest paths algorithm [Yen, 1972; Eppstein, 1999]
- Maximum search space size: k^n
- Quicker approximation of Pareto Front
Multi-Objective Evolutionary Algorithm

1: $A \leftarrow InitialiseArchive()$ \triangleright Initialise elite archive randomly
2: for $i \leftarrow 1 : T$ do
3: $\mathcal{R}_1, \mathcal{R}_2 \leftarrow Select(A)$ \triangleright Select two parent solutions
4: $\mathcal{R}' \leftarrow UniformCrossOver(\mathcal{R}_1, \mathcal{R}_2)$
5: $\mathcal{R}'' \leftarrow Mutate(\mathcal{R}')$
6: $A \leftarrow NonDominated(A \cup \mathcal{R}'')$ \triangleright Update archive
7: end for
8: return A \triangleright Approximation of the Pareto set

Crossover Select paths for each node from parents

Mutation Replace paths randomly from k-shortest paths for some nodes
Real Network: The Victoria & Albert Museum
Real Network: The Victoria & Albert Museum

Basement

Ground

First

Second

Third
Real Network: The Victoria & Albert Museum

- 30 nodes + gateway
- $k = 10$; search space is limited to 10^{30} solutions.
- Initial population size: 100
- Mutation and crossover rate: 0.1
- Number of iterations: 150,000
- Run time: 2 minutes
30 nodes + gateway

- $k = 10$; search space is limited to 10^{30} solutions.

- Initial population size: 100

- Mutation and crossover rate: 0.1

- Number of iterations: 150,000

- Run time: 2 minutes
30 nodes + gateway

\(k = 10\); search space is limited to \(10^{30}\) solutions.

Initial population size: 100

Mutation and crossover rate: 0.1

Number of iterations: 150,000

Run time: 2 minutes
Real Network: The Victoria & Albert Museum

Average lifetime: 2 years
Minimum lifetime: 0.75 years (node v_{19})
Real Network: The Victoria & Albert Museum

Average lifetime: 1.93 years
Minimum lifetime: 1.12 years (node v21)
Real Network: The Victoria & Albert Museum

Average lifetime: 1.97 years
Minimum lifetime: 0.97 years (node v_{19})
Recovering from Link Failure

- Select operating point from estimated Pareto front
- Simulate radio activity for 6 months
- Simulate link failure
Recovering from Link Failure

- Select operating point from estimated Pareto front ✓
- Simulate radio activity for 6 months
- Simulate link failure
Recovering from Link Failure

- Select operating point from estimated Pareto front ✓
- Simulate radio activity for 6 months ✓
- Simulate link failure

![Graph showing lifetime analysis](image)
Recovering from Link Failure

- Select operating point from estimated Pareto front ✓
- Simulate radio activity for 6 months ✓
- Simulate link failure ✓
Recovering from Link Failure

- Reoptimize with aged front

![Graph showing Minimum Lifetime vs. Average Lifetime (years)]
Recovering from Link Failure

- Reoptimise with aged front

![Graph showing Minimum Lifetime vs. Average Lifetime (years)]
Recovering from Link Failure

- Reoptimise with aged front
Recovering from Link Failure

- Reoptimise with aged front

![Graph showing Minimum Lifetime vs. Average Lifetime with indicated fronts.](image-url)
Extending Minimum Lifetime
Extending Minimum Lifetime

Node 1

Node 5

Charge

Time

\(\mathcal{R}_1 \)

Rahat, Everson & Fieldsend

MORO for Battery Powered WSMN

GECCO, July 2014
Extending Minimum Lifetime

Node 1

Node 5

Charge

Time

\mathcal{R}_2

Rahat, Everson & Fieldsend

MORO for Battery Powered WSMN

GECCO, July 2014
Extending Minimum Lifetime

\mathcal{R}_1

Charge vs. Time for Nodes 1 and 5

Graph 1: Charge vs. Time for Node 1
Graph 2: Charge vs. Time for Node 5
Extending Minimum Lifetime

\[R_1 + R_2 \]

Node 1

Node 5

\[R_2 \]

Charge

Time
Extending Minimum Lifetime

\[\langle R_1, R_2, R_3 \rangle \]
Extending Minimum Lifetime

![Graph showing the relationship between average lifetime and minimum lifetime](image)

- Average Lifetime (years)
- Minimum Lifetime (years)

Rahat, Everson & Fieldsend
MORO for Battery Powered WSMN
GECCO, July 2014
Extending Minimum Lifetime
Extending Minimum Lifetime

Average Lifetime (years) vs. Minimum Lifetime (years)
Extending Minimum Lifetime

Multiple Routing Scheme

Single Routing Scheme

Average Lifetime (years)

Minimum Lifetime (years)
Summary

- Multi-objective optimisation of routing schemes to extend battery powered mesh network lifetime
- Novel k-shortest path search space pruning enables rapid optimisation
- Dynamic reoptimisation allows recovery from node or link failure
- Novel temporal load balancing to improve performance
- Patent applied for with the IMC Group Ltd.

Current Work

- Find optimum time span for component routing schemes
- Protect a group of nodes