Skip to main content

Profile

Photo of Dr Anna Harper

Dr Anna Harper

Senior Lecturer, Climate Science

Email:

Telephone: 01392 724588

Extension: (Streatham) 4588

My research focuses on interactions between vegetation, climate, and humans. I am interested in better understanding:

- Processes that govern how plants respond to climate extremes and trends in climate change;

- The impacts of climate and human land use on ecosystems;

- Feasibility of land-based mitigation pathways (such as regrowing forests or bioenergy crops).

I primarily use models in my research, supported by observations at sites or from satellites. Lately I have also been combining environmental data and statistics to improve model predictions. I also enjoy supporting student research projects, please get in touch if you are interested in working with me.

News

I'm currently taking a break from science & academia to welcome my son into our family. I'll return from adoption leave in late July 2021.

June 2021: 

New 4 year project ESM2025 starts, an EU Horizon2020 project. We aim to provide the next generation of Earth System Models, to aid in development of ambitious and realistic mitigation and adaptation strategies in line with the Paris Agreement. Post-doctoral researcher Emma Littleton will be working on representing bioenergy crops and forest harvest in JULES.

New paper published: Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements, published in GMD. This paper is the result of the large collaborative group, the Soil Moisture Stress JULES Process Evaluation Group, led by myself and Karina Williams, who holds a joint post at the UK Met Office and in the Global Systems Institute at the University of Exeter. We hope it's the first of many papers from the group suggesting vital improvements in the JULES model.

May 2021:

Launch of the 4.5 year project Net Zero Plus, lead by Ian Bateman in the Business School. This project will inform policy decisions on planting of trees over the next 25 years in the UK, linking up environmental, economic, and social considerations to help the UK deliver on its stated aim of Net Zero emissions by 2050. The team includes the National Trust, Forest Research, and more than 20 project partners. Arthur Argles will work on representing forest growth in JULES to support the project.

July 2020: new paper published

First paper from my PhD student, Simon Jones, is now published in Biogeosciences: The impact of a simple representation of non-structural carbohydrates on the simulated response of tropical forests to drought. This is a crucial step in representing seasonal cycles of plant productivity in forests. Congratulations Simon!

 

Land-based climate mitigation and negative emissions

Paper in Nature Communications: Land-use emissions play a critical role in land-based mitigation for Paris climate targets.

The Paris Climate Agreement set an ambition of limiting climate change to well below 2°C warming since pre-industrial times (mid-19th century), with efforts to limit warming to 1.5°C. But at current rates of emission, it will take less than a decade to emit the carbon required to get to 1.5°C of warming. 

So what can we do? We can and should cut emissions, but we should also investigate strategies for removing CO2 from the atmosphere and their implications for ecosystems and people. One option is to produce bioenergy from plants (like switchgrass or wood pellets)  at power stations equipped for Carbon Capture and Storage (CCS), which store CO2 in geologic reservoirs instead of emitting it back into the atmosphere. This is called bioenergy with CCS (or BECCS). Another option is to regrow forests, or to avoid future deforestation. Both of these strategies require large land areas to make a dent in climate change, and they have knock-on effects on food, energy, water, and natural ecosystems. 

My current research investigates the potential for negative emissions of CO2 using BECCS and natural ecosystem-based methods, and the impacts on food, energy, water, and natural ecosystems. By quantifying both the mitigation potential and the impacts, we aim to assess various scenarios for reducing climate change and their consequences. 

My research group uses the land surface model JULES to study biogeochemical cycles, vegetation and carbon cycle dynamics, and will be using the UK Earth System Model to study the effects of climate change on bioenergy production and forests, as well as the impacts on climate of large-scale land use change for bioenergy and carbon sequestration.

This work is currently funded by UKRI project "Feasibility of Afforestation and Biomass energy with carbon capture and storage for Greenhouse Gas Removal (FAB-GGR)" and private funding through the Rockefeller Foundation. In the past, I held an EPSRC Living With Environmental Change fellowship (2016-2019), and was part of the NERC grant "Climate, Land-Use, and Ecosystem Services for 1.5C".

I've been involved in a few other interesting studies relating to the Paris Agreement:

Collins WJ, et al. (2018) Increased importance of methane reduction for a 1.5 degree targetEnvironmental Research Letters*

Comyn-Platt E, et al. (2018) Carbon budgets for 1.5 and 2C targets lowered by natural wetland and permafrost feedbacks, Nature Geosciences

And I've contributed to policy-relevant summaries of mitigation pathways for Paris, led by the EU CRESCENDO project.

 

The global carbon budget

Some of my work the land surface model JULES has contributed to the Global Carbon Project. I've worked on improving vegetation dynamics in the model, as summarized in these two model development papers:

Harper AB et al. (2018) Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional typesGeoscientific Model Development

Harper AB et al. (2016) Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait informationGeoscientific Model Development*

 

I have also contributed to developments for the UK Earth System Model, used in CMIP6 climate change analysis:

Sellar et al. (2019) Description and evaluation of the UK Earth System Model, JAMES

CO2 Fertilization

 

Plants "eat" CO2 to live, so to first order vegetation will benefit from growing atmospheric CO2 concentrations. In reality, there are several complicating factors which will control how much extra CO2 plants can assimilate: changes in weather and climate patterns, changes in nutrient availability, and human land use change and degradation. I'm involved in a project to better understand how plants will respond to rising CO2 using "FACE" (free-air enrichment of CO2) experiments. During these experiments, extra CO2 is pumped into a study area and the responses of the plants and soils are measured. My role is to use JULES to see which processes might be most important in the real world that are missing in earth system models. There is an exciting new FACE project at the University of Birmingham, BiFor FACE. There are three publications so far from this work:

Walker AP et al. (2019) Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichmentNature Communications

Ryan EM et al. (2017) Gross primary production responses to warming, elevated CO2 , and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grasslandGlobal Change Biology*

De Kauwe M et al. (2017) Challenging terrestrial biosphere models with data from the long-term multi-factor Prairie Heating and CO2 Enrichment experiment Global Change Biology

 

Amazon Forest

 

I am particularly interested in the Amazon rainforest, an amazing ecosystem which provides invaluable services to humanity - not least of which is the storage of CO2. Drought threatens this ecosystem. How the forest responds to droughts and the likelihood of future droughts will both play large roles in the future of the global carbon cycle and climate. My PhD research focused on the implications of forest drought responses for the climate system. 

Harper AB, et al. (2010), Role of deep soil moisture in modulating climate in the Amazon forest. Geophysical Research Letters.

Harper AB, et al. (2014) Impact of evapotranspiration on dry season climate in the Amazon forest. Journal of Climate. Press release: http://www.exeter.ac.uk/news/featurednews/title_334187_en.html

This is a good overview of climate thresholds that includes some discussion of the fate of the Amazon forest:

Good P, et al (2018) Recent progress in understanding climate thresholds: Ice sheets, the Atlantic meridional overturning circulation, tropical forests and responses to ocean acidificationProgress in Physical Geography, volume 42, no. 1, pages 24-60, DOI:10.1177/0309133317751843.

 

*Please contact me if you are interested in a publication but do not have access to the Journal. 

 

File uploads

Climate change: the science and the solutions Conference talk from Modern Church Conference: Climate Emergency: the search for hope beyond denial and despair [virtual conference], 13 July 2021.