Skip to main content

Water Resources Management

Water resources management

Water resources management

Water resources management

Our research addresses the provision of safe drinking water to large urban areas. Please see below for some of our research projects related to water resources management.

Current Projects

ENRICH will bring together expertise and experience from UK and Thailand in the areas of climate variability and climate change, floods and drought modelling and water resources management.

The Mun river basin in Northeast Thailand is a prime example of the area impacted by hydro-meteorological hazards. Its specific vulnerability lies in the fact that its upstream parts are more prone to droughts, whereby the downstream part of the basin is a flood risk zone. About 80 to 90% of rice cultivation area in the Mun river basin is rain-fed. Rainfall in the study area is highly erratic both in space and time even though the annual average amount is near to the norm of Thailand. This unevenness has serious effects on rice production, living conditions and income of farmers who are the main population in the region.

The ultimate aim of this project is to establish a strong collaboration and exchange of knowledge between the University of Exeter and AIT, to develop innovative integrated solutions to address the pressing problem of hydro-meteorological extremes and adaptation strategies and measures in the Mun river basin.

The proposed project will address the following research questions:

  • What are the main environmental drivers affecting the meteorological and climate variability and change in Northeast of Thailand?
  • What are possible hydro-meteorological scenarios and extremes in future in the study area? What is the level of confidence that the projected changes can be attributed to environmental and climate changes?
  • What are the expected changes in hydro-meteorological hazards and risks due to future climatic extremes?
  • What are the possible and plausible adaptation strategies and measures to improve climate resilience in the study basin?
  • In line with the recent policy and planning of the Royal Irrigation Department and Department of Water Resources of Thailand, this study will investigate drought hazard due to future climate change, and its impacts on vulnerability and risk in the study area. Furthermore, analysis on current adaptive measures and recommendation for further improvement to cope with future climate change will be produced.

The proposed two and a half year research programme will be realized through four integrated Work Packages (WPs):

  • WP1: Land use changes
  • WP2: Climate variability and climate change
  • WP3: Hydrometeorological extremes
  • WP4: Adaptation strategies based on the synthesis of results
  • The ENRICH team will work closely with the Thai Department of Water Resources and the Royal Irrigation Department, from the project inception workshop, through data acquisition and analysis and finally during the dissemination phase, so that the outputs can be taken up.

Two public participation meetings will be organised in the study area with local stakeholders - farmers, industries, local line agencies at provincial/district levels etc. - to understand the hydro-meteorological hazards related issues (at the start of the project), and discuss adaptation measures (towards the end of the project while developing the adaptation strategies and measures) with them.

Whilst ENRICH is a stand-alone initiative that can be completed independently, from an early stage it will seek cooperation with other projects funded within this programme to identify the potential for synergies through sharing data and expertise.

This project will scope the flood risk of the Mun River Basin and analyse different types of drought and the yearly succession of wet and dry periods in current and future climates. The project will extend the scope of the ongoing ENRICH project (that is focussed on drought) to include flooding as the other hydro-meteorological extreme critical for South-East Asia and beyond. Findings from this project will address the classical but exacerbated problem of “too much” or “too little” water in the context of climate change. The key output will be the framework for integrated management of hydro-meteorological extremes that will be fundamental for future investigations of strategies for adaptation to drought and flood disasters.

This six-month project will build upon the successful partnership that the teams from University of Exeter and the Asian Institute of Technology (AIT) in Bangkok have had on ENRICH since 2018. Professors Slobodan Djordjevic, Mat Collins and Albert Chen from CEMPS and Professors Babel, Shrestha and Loc from AIT will work with a team of six postgraduate researchers at the two institutions. The project is supported by experts from relevant departments of Thai Government and scientific advisors from Denmark and the Netherlands.


With focus on co-development between EU and India ensuring exploitability of its outcomes, LOTUS brings a new ICT solution for India’s water and sanitation challenges in both rural and urban areas.

High-level objectives:

  1. To co-design and co-produce, jointly with EU and Indian partners, an innovative multi-parameters chemical sensor as an advanced solution for water quality monitoring in India. It shall use advanced technologies (carbon nanotubes) capable of monitoring in real time multiple contaminants and adaptable to diversified use cases in India;
  2. To develop a suite of tailor-made software tools, combined into a platform with cloud-based implementation. By integrating LOTUS new sensors to advanced ICT technologies, it shall improve water management according to the specific requirements of LOTUS Use Cases, representative of water challenges in India;
  3. To demonstrate and showcase the LOTUS sensor and software solution in a wide variety of Indian use cases across the whole value chain of water (urban and rural areas, drinking and irrigation water quality, river and groundwater monitoring, treated wastewater quality). Across use cases, the common goal is to improve on water availability and quality by improving on existing infrastructures, thus answering a wide range of socio-economic and technical water challenges in India;
  4. To investigate, co-design and plan the business model and market uptake of the LOTUS solution, with industrial production and further development and production of the sensor in India, ensuring an advanced but affordable, low cost product and solution for monitoring water quality, after the end of the project;
  5. To promote social innovation, by introducing co-creation, co-design and co-development with Universities, Research Centres, SMEs, NGOs, Utilities and local stakeholders, bringing together social sciences and technology experts, as a paradigm of successful EU-India Cooperation in the water sector, with lasting social, technological and business impacts for water quality in India, leading to viable, affordable and (socially) acceptable products and solutions, capacity development, job creation, contribution to wider issues and initiatives and wide outreach activities.

Visit the LOTUS website for further information. 

NextGen evaluates and champions transformational circular economy solutions and systems around resource use in the water sector.

NextGen aims to boost sustainability and bring new market dynamics throughout the water cycle at the 10 demo cases and beyond. Three key areas of action are foreseen.

The project will asses, design and demonstrate a wide range of water-embedded resources, including:


Itself with reuse at multiple scales supported by nature-based storage, optimal management strategies, advanced treatment technologies, engineered ecosystems and compact/mobile/scalable systems.


Combined water-energy management, treatment plants as energy factories, water-enabled heat transfer, storage and recovery for allied industries and commercial sectors.


Such as nutrient mining and reuse, manufacturing new products from waste streams, regenerating and repurposing membranes to reduce water reuse costs, and producing activated carbon from sludge to minimise costs of micro-pollutant removal.

An integral part of deploying NextGen solutions will be to define and cultivate the framework conditions for success:

  • Involving and engaging citizens and other stakeholders - to give feedback on technology development, increase collective learning and shape solutions and behavioural change using communities of practice and living labs. Serious gaming and augmented reality will be immersive tools to explore the circular economy and behaviour change.
  • Addressing social and governance challenges - to ensure long-term adoption and support for circular economy solutions. This includes social acceptability testing, policy and regulation support and development of a European Roadmap for Water in Circular Economy.

Last but not least, NextGen will explore new business models and support market creation with three key initiatives:

  • A thorough analysis, profiling and sharing of business models and services for water solutions in the circular economy;
  • An online marketplace allowing users to explore NextGen showcases and demo case technologies;
  • Business and marketing support to exploit the extensive new opportunities revealed by adopting a circular economy approach.

For further information, please visit the NexTGen website.

This fellowship investigates how to develop smart water infrastructure systems using Information and Communication Technologies (ICT) and big data already available in the water industry in response to a changing environment including extreme weather.

There is a critical need to develop new advanced data and visual analytics to unlock the value of large-scale water utility databases for informed real time decision making on a wide variety of different problems including leakage, flooding, water pollution and energy efficiency. This fellowship offers exactly such an opportunity, through close collaboration with Northumbrian Water Ltd, to turn piecemeal techniques into integrated solutions for industry problems, thus is timely for major impact on large investments in water infrastructure in the next 50 years.

This fellowship aims to develop the next generation advanced analytics and tools that enable real time decision making for management and operation of smart water infrastructure systems. This fellowship will promote wider deployment of sensing and measurement technologies and informed, real time decision-making. It will improve operational automation and efficiency under standard design conditions and operational resilience under extreme conditions. This fellowship is particularly important to provide a step change towards a smart water system where the sensors and controllers are linked together for fully automated decision making in response to dynamic environments.

The South West Partnership for Environmental and Economic Prosperity (SWEEP) is a collaborative initiative that will help deliver economic and community benefits to the South West, whilst also protecting and enhancing the area’s natural resources.

Funded by Natural Environment Research Council’s Regional Impact from Science of the Environment programme for 5 years, SWEEP will bring academic experts, businesses and policy makers together to solve some of the challenges involved in managing, utilising and improving the natural environment.

SWEEP is a collaboration of three research institutions: the University of Exeter, the University of Plymouth and Plymouth Marine Laboratory – working together with a large group of highly engaged business, policy and community partners.

ULTIMATE aims to create economic value and increase sustainability by valorising resources within the water cycle.

ULTIMATE will act as a catalyst for “Water Smart Industrial Symbiosis” (WSIS) in which water/wastewater plays a key role both as a reusable resource but also as a vector for energy and materials to be extracted, treated, stored and reused within a dynamic socio-economic and business oriented industrial ecosystem. We adopt an evidence-based approach anchored on 9 large-scale demonstrations across Europe and SE Mediterranean relevant to the agro-food processing, beverages, heavy chemical/petrochemical and biotech industries.

We recover, refine and reuse wastewater (industrial and municipal) but also extract and exploit energy (combined water-energy management, treatment processes as energy producers, water-enabled heat transfer, storage and recovery) and materials (nutrient mining and reuse, extraction and reuse of high-added-value exploitable compounds) contained in industrial wastewater. We support the cases and ensure their replicability through smart tools to optimize and control, assess costs and benefits, minimize risks and help stakeholders identify, assess and explore alternative symbiotic pathways linked to emerging business opportunities, supported by tailored contracts and investment schemes.

ULTIMATE nurtures partnerships between business (incl. industrial and technological ecosystems), water service providers, regulators and policy makers and actively supports them through immersive Mixed Reality storytelling using technology and art to co-produce shared visions for a more circular, profitable, socially responsible and environmentally friendly industry, with water at its centre. The project mobilises a strong partnership of industrial complexes and symbiosis clusters, leading water companies and water service providers, specialised SMEs, research institutes and water-industry collaboration networks, and builds on an impressive portfolio of past and ongoing research and innovation, leveraging multiple European and global networks to ensure real impact.

For further information, please visit the ULTIMATE website.

Recent Projects

This project aimed to support water management in the Indo-Gangetic Plain (IGP) through interdisciplinary collaboration across sectors, local communities, institutions and academia.


Managing water resources in the Indo-Gangetic Plain (IGP) is challenging because of the basin's uniqueness in scale, it's biophysical complexity and the dynamics of its institutional and socio-economic characteristics. India's green revolution, initiated in the mid-1960s to achieve food security for its growing population, resulted in large-scale environmental change from natural land covers and rainfed cropland to intensively managed agricultural systems. Unmanaged and inefficient water abstraction for irrigation, combined with poorly controlled waste management practices, has severely degraded the quantity and quality of regional water resources and now threatens ecosystem services and human health. Water management in the IGP is challenged by the imbalance between water demand and seasonal availability related the monsoon cycle as well as difficulties in coordinated planning of surface and groundwater resources. A lack of cross-sectorial cooperation leads to competition for scarce water resources, while perverse government subsidies for irrigation water and electricity potentially lead to wastage of resources. Lastly, the basin’s groundwater resources that are, to a large extent, a primary source for irrigation and rural and urban water supply, are independently managed by multiple agencies.

Considering continued economic development and population growth, as well as the impacts of climate change, it is clear that achieving water security in India and especially the IGP is a growing challenge that requires interdisciplinary collaboration across sectors, local communities, institutions and academia. CHANSE, which is funded through the Newton-Bhabha Fund, a joint initiative between UK NERC and Indian Ministry of Earth Sciences, brings together researchers from leading UK and Indian institutions, in partnership with international and local non-governmental organisations, to support water management in the IGP.

Aim and objectives

The main aim of CHANSE is to improve the quantification of the dominant interactions and feedbacks between human activities and the hydrometeorological system of the Indo-Gangetic Plain. The objectives are:

  • To estimate the surface and groundwater availability in the IGP under current and future climates and anthropogenic activities
  • To improve understanding of the spatio-temporal dynamics and feedbacks in the coupled human-natural system of the IGP basin
  • To develop regional predictions of seasonal and subseasonal monsoon rainfall, decadal climate predictions, and regional weather forecast for flood forecasting that will improve water management strategies
  • To identify thresholds in water requirements and desirable surface and groundwater resources to govern sustainable management of coupled water, food and ecological systems in the IGP

CWS contribution

Within CHANSE, the CWS team led by Professor Slobodan Djordjevic and Professor Dragan Savic, are leading the development of an integrated assessment model for the Indo-Gangetic Plain following the System Dynamics approach. This work package will integrate data and models developed within CHANSE in order to perform trend predictions under a range of climate and development scenarios. Ultimately, this tool will enable better informed decision making towards sustainable water management of coupled human and natural systems in the IGP.

In addition, CWS researchers will collaborate with climate experts at IIT Bombay to develop basin to sub-basin scale predictions of seasonal and sub-seasonal monsoon rainfall in the IGP using regional climate models with improved representations of regional characteristics and land surface feedbacks. In particular, CWS will focus on the development of a flood forecasting system for disaster mitigation and water management under weather extremes.

Project partners

  • Imperial College London, UK
  • Indian Institute of Technology Bombay, India
  • University of Exeter, UK
  • Indian Institute of Science Bangalore, India
  • Indian Institute of Tropical Meteorology Pune, India
  • British Geological Survey, UK
  • Ashoka Trust for Research in Ecology and the Environment, India
  • Tilka Manjhi Bhagalpur University, India
  • United Nations Educational, Scientific and Cultural Organization

For further information, see the Centre for Climate Change Research, Indian Institute of Tropical Meterology webpage.

This project aimed to address the issue of efficient water and energy demand resources management for the Chilean mining industry through modelling of water supply system and optimisation of its operation.

The main aim of the project was to advance knowledge about water demand in mining industry in order to develop cost-effective methodologies and tools to manage water demand by reducing water wastage, energy demand and impact on environment. This was achieved by development of an integrated water management framework to demonstrate evidence based potential of reducing impact on water in the whole water cycle (starting from seawater source to mining processes and finally when the used water is released back to environment) of mining industry.

Building sustainable local nexuses of food, energy and water: from smart engineering to shared prosperity.

This project focused on the combination of these two emerging trends by assessing the opportunities and challenges of localising food manufacturing. Since RDM focuses on manufacturing, the focus has been on processed food products using bread and tomato paste as examples. Apart from the interconnectedness of the physical resources food, energy and water, the way food supply systems are organised also has a large impact on socio-economic factors. In addition, policies can influence both the physical and socio-economic aspects of food supply systems. Therefore, within the LNN project a multilayer approach has been adopted in which food supply systems are evaluated from the physical, socio-economic and policy perspectives.

The five-year Fellowship, awarded to Professor David Butler, worth around £1.5 million, will fund a project which aims to develop a new approach to water management in UK cities.

Safe & SuRe will draw from multi-disciplinary collaboration with leading academics inside and outside the field.

The vision of this work is to develop a system for water management which is sustainable and resilient. A comprehensive, quantitative evaluation framework will be developed to test in detail what options or strategies can contribute towards a Safe and SuRe water future, focusing on the challenges of water scarcity, urban flooding and river pollution.


  1. To develop, test and refine the Safe & SuRe water vision in the context of British cities
  2. To investigate, specify and develop a quantitative option assessment framework
  3. To evaluate threat mitigation and adaptation options and strategies and explore potentially conflicting goals and key interdependencies
  4. To develop a strategy for implementation incorporating transitioning approaches, preparedness for extremes, water users’ responses and the neglected role of town planning
  5. To engage widely with academic leaders in urban water management and other fields
  6. To collaborate with stakeholders and champion the vision and key findings into practice.

The key focus is on how existing urban water systems can be better used, managed, regulated, planned, operated, rehabilitated, retrofitted and redesigned to cope with the coming ‘perfect storm’.  

David Butler is Professor of Water Engineering at the University of Exeter with some 30 years of experience in the water industry. He jointly leads the Centre for Water Systems, which has around 30 researchers working mainly in the areas of urban water, system optimisation and hydroinformatics. Working with David on the Safe & SuRe project are colleagues Dr Raziyeh Farmani, Dr Guangtao Fu and Dr Sarah Ward.

SIM4NEXUS searched for new scientific evidence on sustainable and integrated management of resources (water, land, energy and food) in Europe and elsewhere, and adopted the Nexus concept in testing pathways for a resource-efficient and low-carbon Europe.

SIM4NEXUS increased the understanding of how water management, food production and consumption, energy supply and land use policies are linked together, and how they relate to climate action. The research activities offered solid ground on the benefits of using a Nexus approach, primarily to exploit and create synergies between policies and avoid conflicts between policies. European policies for water-land-energy-food-climate sectors reckon with trade-offs in other sectors. However, opportunities for synergies are less explored and there is no institutionalised procedure for a comprehensive Nexus assessment of new policies. New integrating themes (e.g., circular and low-carbon economy related to resource efficiency and planetary boundaries) can stimulate a Nexus approach.

Our results and products contribute to the legacy of SIM4NEXUS, including knowledge and products to be used for training (i.e., universities, policy, business and civil society organisations). Commercial applications and training courses are planned to ensure follow-up actions. A combined for-profit and non-profit exploitation strategy is developed to ensure the largest project impact, among others to contribute to policy support and future assessments, including those of the Intergovernmental Panel on Climate Change (IPCC). Side-events were organised during COP23 (Bonn, November 2017) and COP24 (Katowice, December 2018) to present progress on the Nexus and climate action.

SIM4NEXUS will seek to partner with international fora in Europe and beyond (e.g. Nexus Project Cluster), to team up for increased and more impactful communication and dissemination of the Nexus concept.

Understanding the Nexus

SIM4NEXUS has a strong research dimension. SIM4NEXUS advanced in the understanding and assessment of the Nexus in various con- texts. A framework for the assessment of the Nexus is developed to facilitate future research assessing the impacts of interventions from

a Nexus perspective. Moreover, interlinkages between water, land, food, energy and climate are now made operational, identifying both the most influential and vulnerable resources. The degrees of interlinkages are defined, including direct and indirect pathways from one Nexus component to another. The Greek case study for example, proves the food sector is the one with the most influence on other Nexus dimen- sions, while water is the most affected and vulnerable resource (Laspidou et al., 2019).

Policy Analysis

Agriculture and Food are key sectors to increase the sustainability of natural resource use.

Climate change, climate change mitigation, and adaptation put pressure on agriculture and food security. At the same time, the agro-food chain can offer solutions for these problems, for example, by replacing animal with vegetable proteins in the diet and increasing resource efficiency in the agro-food chain.

European Common Agricultural Policy can support the transition to more resource-efficient agriculture, e.g., by encouraging farmers to grow less water-demanding or non-irrigated crops, to use technologies for precision irrigation and to reduce emissions of nutrients and pesticides. To protect and restore the soil, water, biodiversity, ecosystems and the landscape, Good Agricultural and Environmental Conditions (GAEC) and Greening measures should be stricter and better maintained, and direct payment should be linked to public services instead of agricultural land area.

Successful Nexus policy has many dimensions and is multi-scale. It concerns the whole policy cycle and depends on political will, mindset, a common vision, knowledge management and careful organisation of the process, which is complex and uncertain. Pilots and scenario analyses are helpful, and monitoring of progress and results is vital, as well as collaboration between researchers, stakeholders and policymakers from the start to end of the process. Long-term engagement and financing must be part of the deal, as no sector or sectoral institution feels responsible for the Nexus between sectors. Thematic approaches stimulate a Nexus approach, such as the European ‘From Farm to Fork’ and ‘Circular Economy’ initiatives.

The following policy briefs have been published:

  • Coherence in EU policy on water, land, energy, food and climate: Climate change adaptation policies (2017)
  • Policy coherence of the EU Common Agricultural Policy (CAP) within the Nexus between water, energy, land, food and climate depends on policy implementation (2019)
  • Implementation of EU Water Policies may benefit from synergies within the nexus between water, energy, land, food and climate (2019)
  • Eight Policy Coherence Recommendation to the European Green Deal (2020)
  • Landscape restoration to mitigate and adapt to climate change in Central and Eastern Europe (2020)

Thematic Models and Integration

System Dynamics Modelling (SDM) is our methodology of integration, including the modelling of multiple feedback and interaction among resources in the Nexus. SDM dates back from the 1960s. Used for studying feedback problems in industrial processes, it aims to understand how a system behaves and responds to incentives and changes. It proved to be a strong innovative methodology to test the Nexus concept.

The project builds on well known and scientifically established existing models, each to simulate different themes of the Nexus, such as Capri. E3ME, IMAGE-GLOBIO, MAGNET, MagPIE, OSeMOSYS and SWIM.

System Dynamics Modelling is used, integrating public domain data and metadata for decision and policy making.

Serious Game

SIM4NEXUS has developed a Serious Game. The Serious Game is a computer game that aids learning about the Nexus by helping users to understand and explore the interactions between water, energy, land and food resources management under a climate change context, divides the problem into manageable interventions, and allows participants to learn by doing. The ultimate goal of game development is to create a fun and interactive capacity-building tool to be used in research, educational settings and management.

The SIM4NEXUS Serious Game provides impressive user experience and state of the art technology to allow users to learn about the Nexus concepts while playing. To that end, the game relies on four main elements: the Graphic User Interface, the Knowledge Elicitation Engine, the Game Logic and the Nexus repositories.

Case studies & stakeholder engagement

Methodologies and tools to integrate the Nexus components have been tested with real-life challenges in 12 case studies at regional, national, European and global scales. The SIM4NEXUS Partners worked in close collaboration with relevant stakeholders to:

  • Specify the Nexus challenges they face
  • Apply the tools developed by SIM4NEXUS
  • Investigate the applicability and relevance of these tools for supporting decisions and raising awareness
  • Develop effective policy adaptation and implementation that supports a resource-efficient Europe.
  • The science-policy participatory and iterative process established has successfully led to policy recommendations.

An amazing wealth of data has been collected, both from local sources and thematic models, and connected through the specific System Dynamic Models. Policy interventions have been tested through the Serious Game and best possible combinations towards Nexus-compliance have been identified.

SWEEP 006 connects academics and industry to evaluate and implement the potential of regional scale sustainable drainage in South West England.

The South West Partnership for Environmental and Economic Prosperity (SWEEP) is a collaborative initiative that will help deliver economic and community benefits to the South West, whilst also protecting and enhancing the area’s natural resources.

SWEEP 006 (Sustainable Drainage) is a sub-award of the main SWEEP partnership. The objective of this sub-award is to connect academia and industry to evaluate and implement sustainable drainage at a regional scale in South West England.

The project achieves this aim through establishing academic-industry networks, delivering training, developing tools and supporting ongoing sustainable drainage projects with partners across the region.

Find out more on the dedicated website.

The TWENTY65 research programme focuses on interdisciplinary teams working across the water cycle to develop flexible and synergistic solutions tailored to meet changing societal needs and achieve positive impact on health, environment, economy and society.

Can we close the urban water cycle by integrating stormwater management with water supply management? Focusing on integrated urban water management from a household, to the street through to the catchment level, can incorporating dual function rainwater harvesting and sustainable drainage systems offer a key solution?

For more information, visit the 'Twenty65' dedicated website.


The overall objective of the Water4India project was to optimise and implement a set of technological alternatives for water supply in India.

The key objectives include:

  • Identify the main vulnerable areas suffering from water scarcity taking into account different factors such as current and future water availability, supply from centralized or decentralized sources, and qualitative and quantitative requirements of communities in the light of available sources and their quality.
  • Assess and quantify currently applied technologies to produce drinking water at a small scale level. Its integration with different solutions to address water shortage will be considered.
  • Adapt and develop a set of solutions based on technological components for water treatment on a small scale according to the end-users needs in the identified areas. These technologies will include:
    • Ultrafiltration with optimized energy demand
    • Filtration based on microfibers
    • Desalinization technologies such as reverse osmosis
    • UV disinfection
    • Membrane distillation
    • Adsorption using conventional and novel low-cost, locally available materials
  • Assess and quantify existing technologies for water quality monitoring to evaluate the quality of raw and treated water, and also the composition of wastewater. Special attention will be given to pathogens, studying the quality of water by state-of-the-art methods such as Quantitative Microbial Risk Assessment within the framework of Water Cycle Safety Plans based on good-house keeping.
  • Develop a Decision Support System which integrates multi-criteria evaluation of technological alternatives for obtaining drinking water of the appropriate quality in each socio-economic situation, together with its management and sustainability assessment. This DSS will allow stakeholders and authorities to compare and select the best components to meet environment, economic and social aspects.
  • Demonstrate the selected technologies in two pilot sites with different geological, hydrological and technical situations.
  • Propose best practice guidelines for the end-users, especially when small scale technologies are chosen.

CWS contribution to WATER4India

Led by Prof. Fayyaz Ali Memon, CWS team were primarily responsible for developing two tools:

  • A user friendly tool to reduce consumption at household level through the selection of water efficient technologies keeping in view a range of sustainability indicators and the Indian context
  • A high level decision support systems to propose a range of water treatment technology terrains and develop their multi criteria based evaluation with specific reference to application potential in developing countries.

This was a 3 year project supported by the European Union under the FP7 SME targeted Collaborative Project Call. The project team included nearly 20 partners from European Union member states and India.

Project partners

  • SOLINTEL M&P, Spain
  • University of Applied Sciences Northwestern Switzerland
  • Centre for Water Systems, University of Exeter, UK
  • RWTH Aachen University, Germany
  • KWR Water, Netherland
  • Cranfield University, UK
  • Adin Holdings, Israel
  • AMIAD, Israel
  • Solarspring, Germany
  • Vertech Group, France
  • Proinso, Spain
  • University of Technology, Sidney, Australia

This project aimed to engage an audience of 70% girls and women with water issues and the contribution of engineering to solving them.

Through engaging 3 different schools in deprived areas of Taunton in discussing, designing and delivering sustainable drainage systems (SuDS) and alternative water supplies (AWS), this project aimed to engage an audience of 70% girls and women with water issues and the contribution of engineering to solving them. The purpose of this is to increase the awareness of pressures on the water-cycle, interest of female students from low-income backgrounds in choosing engineering-related subjects, and foster supportive attitudes in adults to encourage girls to show interest in engineering.

Past Projects

Wastewater reuse presents a feasible solution to the growing pressure on Europe's water resources. However, wastewater reuse implementation faces obstacles that include insufficient public acceptance, technical, economic and hygienic risks and further uncertainties caused by a lack of awareness, accepted standards, guidelines and uniform European legislation.

So far, there are no European regulations on water reuse and further development is slowed by lack of standards in water quality, treatment and distribution systems. While guidelines for agricultural water reuse have been defined by the World Health Organisation, and by different states such as the USA and Saudi Arabia, a uniform solution for Europe is lacking. European standards have to take a complex water policy and management framework into account and have to balance the protection of water resources, economic and regional interests and consumer-related safety standards.

The Centre's involvement concentrates on WP8 of the project dealing with optimal total system design, using multi-objective Genetic Algorithms with mathematical modelling tools for different components of the reuse system (piping network, wastewater treatment plants, upgrading, etc).

Working as part of the AQUAREC consortium (, the Centre for Water Systems, University of Exeter recently developed decision support software (DSS) for Water Treatment for Reuse and Network Distribution (WTRNet). As the name suggests, the software has been developed that addresses both the treatment and distribution aspects of potential water reuse schemes, considered at a planning level. This article describes in brief the process followed in the development of WTRNet software and provides a description of its key features. A PowerPoint presentation can be found here (4MB).

Reclaimed water projects typically include construction of new treatment or upgrades to a municipality’s treatment systems to clean wastewater to the required quality level, and construction of distribution systems which may include pipelines, pumping and storage facilities for reclaimed water. Therefore, the complexity associated with the planning of water reuse systems is very high, as a very large number of design combinations is possible. Also, one of the requirements of the AQUAREC project was that the spatial relation between wastewater treatment sites and potential reuse locations has to be considered. To aid in the planning of water reuse schemes several DSS have been developed in the past. A comprehensive literature review of DSS in the water reuse area revealed that the majority of water reuse research has been focused on the generation, evaluation and optimisation of treatment, despite the fact that “no single factor is likely to influence the cost of water reclamation more than the conveyance and distribution of the reclaimed water from its source to its point of use” (US EPA Guidelines for Water Reuse, EPA/625/R-04/108, 2004). Several researchers considered the distribution system in their evaluation of reuse schemes, with significant simplifications of treatment processes.

The key objective in the development of WTRNet was to develop a DSS that overcomes the limitations of existing tools, by addressing both the treatment and distribution aspects of water reuse schemes in an integrated manner and with sufficient detail. The software development focused on allowing the user to deal with the following questions:

What processes are needed to produce reclaimed water of adequate quality for a specified influent quantity/quality and end-user requirements?
How is the reclaimed water going to be delivered to end-users (i.e., sizes of distribution system components required)?
Who should receive the reclaimed water (i.e. best selection of customers from the identified potential end-users)?
Click here if you want to download a PowerPoint presentation of the work on development of WTRNet.

In order to conduct evaluations required to answer the above questions in an efficient manner, the simulation component was first developed along with a user-friendly interface. The simulation model includes a default knowledge base stored in the project file, as well as separate computational modules for treatment performance and sizing of the reclaimed water distribution system. The model knowledge base contains the following information: the design and costing information on unit processes, water quality requirements for different types of end uses of reclaimed water, suggestions for treatment trains that could be used for influent quality / end use combinations, rules for combining unit processes, and the design and costing information on the distribution system components. Information on treatment processes has been verified by comparing the software outputs with existing reuse schemes and values for cost and performance of treatment options reported in the literature.

The treatment performance has been developed with functionality to perform the evaluation of user-selected combinations of unit processes in a treatment train. The evaluation of treatment train performance and the display of treatment train evaluation results are carried out as changes to the treatment train are made. Since the evaluation results in a large output, the calculated data is displayed through four separate frames on the form: effluent quality, pollutant percent removed, evaluation criteria scores and costs and resources.

The distribution system performance computational module is used to optimally size the distribution system elements. The sizing is carried out based on a pre-determined branched layout and preferences of the user for locating the pumping and storage facilities, entered using a user-friendly interface. The method used is a two-step procedure that first determines the optimal allocation of reclaimed water (along with optimal sizes of seasonal storage), followed by the sizing of pipes and pumping stations.

In addition to allowing the software user to evaluate a large number of design alternatives using the simulation component of WTRNet, the software includes optimisation routines for conducting the least-cost planning of integrated water reuse systems. The verified simulation software was used as basis for the optimisation components, initially to determine the numbers of possible design alternatives involving different end-uses and numbers of customers. This results of this exercise showed that incorporating a single optimisation methodology would not be appropriate, since the number of design alternatives changes by several orders of magnitude, depending on the influent quality an the number of potential end-users considered.

In order to accommodate the wide range of the number of possible design alternatives, three algorithms are incorporated in the optimisation module. If the secondary effluent is to be reclaimed and the number of potential customers is not large, exhaustive enumeration is used to determine the least-cost design alternatives for all combinations of end-users. If the secondary effluent is to be reclaimed for a (potentially) large number of end-users, a simple Genetic Algorithm (GA) is used for optimal user selection. Finally, if the source of water is raw sewage or primary effluent, the optimisation algorithm used is a GA with customised operators. The algorithm conducts a simultaneous search of least-cost design alternatives and the best selection of customers.

The WTRNet decision support tool provides a platform that can be used to conduct the integrated assessment of water reuse options in an efficient manner. The tool has been successfully applied on a case study of water reuse options in the city of Kyjov, Czech Republic, and London, England.

AquaStress is a four year (2005-2009) Integrated Project (IP) funded by the European Commission in the frame of the 6th R&D Framework Programme, with contributions from 35 renowned organizations, including SMEs, from 17 countries.

Water stress is a global problem with far-reaching economic and social implications. The mitigation of water stress at regional scale depends not just on technological innovations, but also on the development of new integrated water management tools and decision-making practices. The AquaStress IP delivers enhanced interdisciplinary methodologies enabling actors at different levels of involvement and at different stages of the planning process to mitigate water stress problems. The IP draws on both academic and practitioner skills to generate knowledge in technological, operational management, policy, socio-economic, and environmental domains.

This IP draws on both academic and practitioner skills to generate knowledge in technological, operational management, policy, socio-economic, and environmental domains.

AQUASTRESS will generate scientific innovations to improve the understanding of water stress from an integrated multisectoral perspective to support:

  • diagnosis and characterisation of sources and causes of water stress;
  • assessment of the effectiveness of water stress management measures and development of new tailored options;
  • development of supporting methods and tools to evaluate different mitigation options and their potential interactions;
  • development and dissemination of guidelines, protocols, and policies;
  • development of a participatory process to implement solutions tailored to environmental, cultural, economic and institutional settings;
  • identification of barriers to policy mechanism implementation;
  • continuous involvement of citizens and institutions within a social learning process that promotes new forms of water culture and nurtures long-term change and social adaptivity.

The IP adopts a Case Study stakeholder driven approach and is organised in three phases:

  • characterisation of selected reference sites and relative water stress problems,
  • collaborative identification of preferred solution options,
  • testing of solutions according to stakeholder interests and expectations.

It will make a major contribution to the objectives of the Global Change and Ecosystems and supporting the Community Directive 2000/60/EC and the EU Water Initiative.


CWS Contribution to AQUASTRESS is the application of Conceptual Modelling, Systems Thinking and System Dynamics Modelling (SDM) for the simulation of the project’s case studies for complex dynamical water and/or environmental systems, that will act as Decision Support Tools, examining various operational scenarios, integrating different technical options for the mitigation of water stress.

SDM is a methodology for studying and managing complex feedback systems. It is typically used when formal analytical models do not exist, but where system simulation can be developed by linking a number of feedback mechanisms. This type of Systems Modelling, being lower in detail and higher in integration, allows the domain experts and the local stakeholders to explore the relationship between various technical options and the overall system behaviour and to increase their understanding of the interactions and impacts among different water system components.

So far there have been two case studies within AQUASTRESS, where SDM has been applied

  • The water system of Kremikovtzi (Bulgaria), where the aim is to reduce clear water consumption and increase water re-use within the plan 
  • The Merguellil valley water system (Tunisia), a hydrological/water resources management model, involving a semi-arid area with increased irrigation demands, including 25 small dams for rainfall harvesting, a large reservoir (El Haouareb) and aquifer recharge.

SDM Software specifications

SDMs are implemented in special visual environments that enable the user to effectively "draw" the system components and their interrelations and run different scenarios. SIMILE® for numerical and VENSIM® for causal-qualitative diagrams have been used for building the models.


  • VAMVAKERIDOU-LYROUDIA, L.S. and SAVIC D.A. (2008). "System Dynamics Modelling: The Kremikovtzi Water System", Report No.2008/01, Centre for Water Systems, School of Engineering, Computing and Mathematics, University of Exeter, UK, 132p
  • VAMVAKERIDOU-LYROUDIA, L.S., SAVIC, D.A., TARNACKI K., WINTGENS T., DIMOVA, G. and RIBAROVA I. (2007). "Conceptual/System Dynamics Modelling Applied for the Simulation of Complex Water Systems", in Water Management Challenges in Global Change, Proc. Int. Conf. CCWI 2007 & SUWM 2007, Leicester UK, 3-5 Sept. 2007, Taylor & Francis Group, London UK, pp. 159-167

Application: Kremikovtzi Water System

The Kremikovtzi metallurgical plant, near Sofia, Bulgaria, constructed initially in 1963, is one of the largest water consumers in the country (total fresh- water consumption 55×106 m3/year on average - roughly equivalent to the water needs of a city with a population of 600 000). Its water supply system is complex and consists of both freshwater (reservoirs, rivers, groundwater) and reused water sources (treated industrial waste water). It also provides water for a number of smaller satellite plants, sharing the same water resources. Some of the system’s freshwater sources are also used by urban and agricultural water users in the Sofia region, leading to regulations for priorities and upper limits to water consumption for industrial use, as well as water stress situations arising in times of drought. SDM has been developed and applied to the Kremikovtzi water system in order to simulate and study future operational scenarios, under varying climatic conditions ("normal", "dry" and "very dry" years) and operational rules.

The general scope for the scenarios and the simulation through SDM is to reduce clear water consumption and increase water re-use within the plan, as well as define suitable operational rules, that will allow the plant to operate under drought and water scarcity conditions. These rules involve hierarchical closure of some less important industrial units and/or reallocation of water resources, defined by the model.

The prototype application involves the water system of the Kremikovtzi industrial plant (Bulgaria), where the aim is to reduce clear water consumption and increase water re-use within the plan. A second application has also been developed for the simulation of the Merguellil Catchment (Tunisia), a hydrological/water resources management model, involving a semi-arid area with increased irrigation demands, a system of 25 small dams for rainfall harvesting, the operation of a large reservoir (El Haouareb) and aquifer recharge.

More related documents are available within our downloads.

The overall aim of the project was to develop a research base on aspects related to urban water demand management and enhancing capacity at institutional and national level through structured knowledge transfer and provision of pilot scale demonstration sites for selected water demand management options in developing countries.

The key objectives included:

  1. Initiate the establishment of 2-3 pilot scale greywater recycling projects to investigate their performance in a predominantly hot climate.
  2. Strengthen the postgraduate environmental engineering curriculum to address local issues and include sustainable solutions pertaining to water demand management.
  3. Develop a web based online resource for water demand management.
  4. Develop a nationwide network for water demand management comprising stakeholders from higher education institutes, industry and government to gather the necessary critical mass to facilitate development, exchange and promotion of knowledge on:
    • innovative (but robust) water distribution system ‘hard’ and ‘soft’ solutions, technology rollout and resulting spin off companies (opportunities and implications for the urban poor)
    • policy formation and decision making
  5. Organise a series of national level training workshops on water distribution systems and an international conference.

CWS contribution to DelPHE project

 CWS team led by Prof. Fayyaz Ali Memon, was responsible for the:

 Supervision of  the development and testing of two low cost grey water treatment options

  • Development of a postgraduate level module with specific focus on urban water demand management
  • Organization of an International Conference on Sustainable Water Management in developing countries.

Project partners

  • Centre for Water Systems, University of Exeter
  • Mehran University of Engineering and Technology, Sindh, Pakistan
  • National Centre of Excellence in Analytical Chemistry, Pakistan
  • Sindh Agriculture University, Pakistan

This 3 year project was jointly funded by the British Council and DFID under Developing Partnerships in Higher Education (DelPHE) programme. The project included CWS collaboration with three higher education institutions in Pakistan.

Control rules have been used in the United Kingdom for more than 50 years to reduce operating costs by controlling the overdrawing and pumped refill of reservoirs. However, for over 25 years some water companies within the UK have been integrating their sources into resource zones so there has been a need to produce conjunctive control rules applying to a whole system. This is undertaken to achieve greater economic returns, a higher reliability of supply and to provide a clear view about the 'spare' resource within a system.

The derivation and construction, whether formally or informally, of reservoir operating control rules within the Environment Agency South West region has been based on a methodology described in The British Hydrological Society Occasional Paper No.1 (1988). This technique is able to deal adequately with the operation of single reservoirs. However, although some guidelines on the operation of multi-purpose, multiple reservoir water systems have been devised, there remains no methodology generally accepted by water resource managers for deriving multiple-reservoir operating policies.

This research developed a new approach to the optimisation of the operation of multiple reservoir systems. The revised methodology develops the concept of an extended drought period with an additional emergency storage reserve to extend the reliability of the system. The operation of the Roadford Reservoir System, South West England, consisting of nine reservoirs was studied. Through simulation analysis, the control rules of each reservoir were revised to achieve the targets to the maximum possible extent. The obtained results are superior to the current operating control rules, in terms of reliability of supply and the volume of demand deficit in Roadford Reservoir System over a 116-year historical data set.


  • Thorne, J.M., D.A. Savic and A. Weston, (2002) Optimised Conjunctive Control Rules for a System of Water Supply Sources: Roadford Reservoir System (UK), Water Resources Management (in press).
  • Thorne, J.M., D.A. Savic and A. Weston, (1999) Development of Optimised Conjunctive Control Rules for a System of Water Sup-ply Sources, in Making Better Use of Water Resources, CIWEM, London, pp. 141-155.
  • Thorne, J. and D. A. Savic, (1998), Development of Optimised Conjunctive Control Rules for a System of Water Supply Sources, Centre for Water Systems, Report No.98/02, School of Engineering, University of Exeter, Exeter, United Kingdom.

AQUATOR® is a commercial software for developing and running simulation models of natural rivers, water resources and water supply systems, using different operational rules, constraints and priorities. Developed by Oxford Scientific Software, it is being used by several water companies in the UK. The Centre for Water Systems has undertaken the task of linking AQUATOR to a Multiobjective Genetic Algorithms optimisation module.

Initially GANetXL, an add-in for Microsoft Excel®, developed by the Centre for Water Systems was linked to AQUATOR, for the optimization of reservoir operation.

However due to the excessive computational time required, AQUATOR-GA, a new GA application was developed, using distributed computing, which has been integrated within the AQUATOR environment.

It has already been applied to two case studies, both reservoirs operated by United Utilities.

For more information see:


The central tenet of the NeWater project is a transition from currently prevailing regimes of river basin water management into more adaptive regimes in the future. This transition calls for a highly integrated water resources management concept. NeWater identifies key typical elements of the current water management system and focuses its research on processes of transition of these elements to adaptive IWRM.

Each key element is studied by novel approaches. Key IWRM areas where NeWater is expected to deliver breakthrough results include:

  • governance in water management (methods to arrive at polycentric, horizontal broad stakeholder participation in IWRM)
  • sectoral integration (integration of IWRM and spatial planning; integration with climate change adaptation strategies, cross-sectoral optimisation and cost-benefit analysis)
  • scales of analysis in IWRM (methods to resolve resource use conflicts; transboundary issues)
  • information management (multi stakeholder dialogue, multi-agent systems modelling; role of games in decision making; novel monitoring systems for decision systems in water management)
  • infrastructure (innovative methods for river basin buffering capacity; role of storage in adaptation to climate variability and climate extremes)
  • finances and risk mitigation strategies in water management (new instruments, role of public-private arrangements in risk-sharing)
  • stakeholder participation; promoting new ways of bridging between science, policy and implementation

The development of concepts and tools that guide an integrated analysis and support a stepwise process of change in water management is the corner-stone of research activities in the NeWater project. To achieve its objectives the project is structured into six work blocks, and it adopts a management structure that allows effective exchange between innovative and cutting edge research on integrative water management concepts, with practical applications and testing through participatory stakeholder processes in selected river basins.

The TiGrESS project will evaluate the utility of Time-Geographical methods in increasing our understanding of the relationships between environmental change and social-economic driving factors through four focussed case studies of significance to sustainable socio-natural development within the European Union.

The case studies will look at problems of fisheries management and regional development, demographics and water resource planning, the dynamics of the European urban network and sustainable agriculture and land-use planning.

WASSERMed is a European Commission Seventh Framework Program (EC FP7) funded interdisciplinary collaborative project that draws together experts from diverse backgrounds including water systems, agriculture, climate change analysis and social studies (see poster). It is one of three “sister projects” under the same theme of 'Climate induced changes in water resources', funded at the same time, focusing on water related threats from different point of views in the Mediterranean area (technical, meteorological, social). The other two projects are CLIMB ( and CLICO (

The main aims of WASSERMed are:

  • to analyse current and future climate-induced changes to the hydrological budgets and extremes in southern Europe and the Mediterranean
  • to explore the implications of these changes under the framework of environmental, social and economic threats to security
  • to develop holistic/integrated modelling approaches to quantify the impact of climate change
  • to assess changes to mean flows and the extremes
  • to develop indicators for the examination and quantification of future water related security issues
  • to develop meaningful and realistic mitigation/policy options with project partners


Study areas

‌The results from WASSERMed aim to be applicable to the entire Mediterranean basin. Five case study areas have been chosen to reflect the diverse range of environments and causes of water-related security threats in the region, while research partners and stakeholders from all these regions participate in the project. The case study areas are:‌

  • Syros Island, Greece
  • Sardinia
  • Tunisia
  • Jordan River, Jordan
  • the Nile River, Egypt‌

Exeter's involvement

System Dynamics Modelling

‌The Centre for Water Systems is the leader of the work package which involves developing and implementing water balance models, for each case study region, now and for the year 2050. Water demand will be estimated for 2050, with the aim being to assess the water-related security threats being posed to each case study area and to the wider Mediterranean basin as a result of potential  climate change scenarios and water shortages. Mitigating policy options will be defined and developed with local stakeholders in terms of absolute- and cost-effectiveness. System dynamics modelling (Fig. 1) is the tool being used in determining the water balance in each case study area, and to forecast future water use and demand. The work builds on previous experience of CWS with SDM for complex water systems at the EC FP6 project AQUASTRESS (2005-2009)

WASSERMed System Dynamics Modelling

Other areas of CWS involvement

  • Macroeconomic effects, trade and virtual water: Global assessment of water balance cases, where an  assessment on the impact of the effects on national economies is being made, and changes in production structure, demand patterns and productivity will be modelled.
  • Sensitive strategic sectors: Assessment of climate change effects on tourism and adaptation measures to climate change for the agricultural sectors in the case study areas.
  • Dissemination and awareness, including stakeholder involvement for participatory processes through project workshops at the case studies sites, training seminars and workshops on System  Dynamics Modelling, so that all partners have an understanding of the processes and methods involved in water balance quantification .

For more information see the WASSERMED poster


Peer-reviewed journal articles

  • Sušnik J., Vamvakeridou-Lyroudia L.S., Savić D.A., Kapelan Z., 2013. Integrated modelling of the water-agricultural system in the Rosetta region, Nile delta, Egypt, using system dynamics. Accepted in Journal of Water and Climate Change.
  • Sušnik J., Molina J-L., Vamvakeridou-Lyroudia L.S., Savić D.A., Kapelan Z., 2013. Comparative analysis of System Dynamics and Object-Oriented Bayesian Networks modelling for water systems management. Water Resources Management. 27(3): 819-841. DOI: 10.1007/s11269-012-0217-8.
  • Sušnik J., Vamvakeridou-Lyroudia L.S., Savić D.A., Kapelan Z., 2012, Integrated System Dynamics Modelling for water scarcity assessment: Case study of the Kairouan region. Science of the Total Environment. 440: 290-306. DOI: 10.1016/j.scitotenv.2012.050.085.

EU project reports

  • Sušnik J., Vamvakeridou-Lyroudia L.S., Savić D.A., Kapelan Z., 2012, Synthesis report on modelling and indicators for policy recommendations. WASSERMed Report 5.3.1. 89pp.
  • Sušnik J., Kampragrou E., Manoli E., Vamvakeridou-Lyroudia L.S., 2012, Preliminary report on water balance modelling for all case studies. WASSERMed Milestone 5.4. 46 pp.
  • Sušnik J., Manoli E.,Vamvakeridou-Lyroudia L.S., Savić D.A., Kapelan Z., 2012, Stakeholder consultation meetings on water balance modelling and evaluation: short report. WASSERMed Milestone 5.6. 16 pp.
  • Sušnik J., Manoli E., Kampragrou E., Mereu S., Vamvakeridou-Lyroudia L. S., Savić D.A., Kapelan Z., 2012, Report on water balancing for all case studies. WASSERMed Report 5.2.3. 72 pp.
  • Sušnik J., Manoli E., Vamvakeridou-Lyroudia L. S., Kampragrou E., Assimakopoulos D., Todorovic M., Mereu S., Roushdi M., El-Ganzouri A., Shatanawi M.S., Lili-Chabaane Z., Chakroun H., Oueslati I., Leduc C., Ogilvie A., Al-Naber G., Saba M., 2011, Water demand scenarios for the Case Studies. WASSERMed Report 5.1.2. 78 pp.
  • Sušnik J., Vamvakeridou-Lyroudia L.S., Savić D.A., Kapelan Z., 2012, Preliminary analysis of scenarios and options for all case studies. WASSERMed Milestone 5.5. 33 pp.
  • Sušnik J., Manoli E., Vamvakeridou-Lyroudia L. S., 2011, Definition, details and specifications of a database for modelling purposes. WASSERMed Report 5.1.1. 27 pp.
  • Sušnik J., Vamvakeridou-Lyroudia L. S., Manoli E., 2011, Report on modelling tools and techniques to be applied to each case study for water balancing. WASSERMed Report 5.2.2. 50 pp.
  • Sušnik J., 2010, Literature review and comparative analysis of the existing methodologies for water balance. WASSERMed Report 5.2.1. 34 pp.
  • Sušnik J., Manoli E., 2010, Selection of indicators for case studies. WASSERMed Milestone 5.1. 51 pp.

Conference proceedings

  • Sušnik J., Vamvakeridou-Lyroudia L. S., Savić D. A. and Kapelan Z., 2012, A System Dynamics Model assessing climate change impacts to the Rosetta region, Nile delta, Egypt. Proceedings of  the 10th International conference on Hydroinformatics, Hamburg, Germany, 13-18 July, 2012.
  • Sušnik J., Vamvakeridou-Lyroudia L. S., Savić D. A. and Kapelan Z.,2011, Evaluating water-related security threats for complex water systems using System Dynamics Modelling, Proceedings of the 11th International Conference on Computing and Control in the Water Industry, University of Exeter, Exeter, UK, 5-7 September 2011, pp. 71-76.
  • Sušnik J., Vamvakeridou-Lyroudia L. S., Savić D. A. and Kapelan Z.,2011, System Dynamics Modelling applied for the integrated simulation of complex water systems, Proceedings of the 8th IWA Symposium on Systems Analysis and Integrated Assessment, San Sebastian, Spain, 20-22 June 2011, pp. 535-542.

View all of our projects related to our CWS research.