Aquastress (2005 - 2009)

Funding body: European Commission (Framework 6)

AquaStress is a four year (2005-2009) Integrated Project (IP) funded by the European Commission in the frame of the 6th R&D Framework Programme, with contributions from 35 renowned organizations, including SMEs, from 17 countries.

Water stress is a global problem with far-reaching economic and social implications. The mitigation of water stress at regional scale depends not just on technological innovations, but also on the development of new integrated water management tools and decision-making practices. The AquaStress IP delivers enhanced interdisciplinary methodologies enabling actors at different levels of involvement and at different stages of the planning process to mitigate water stress problems. The IP draws on both academic and practitioner skills to generate knowledge in technological, operational management, policy, socio-economic, and environmental domains.

This IP draws on both academic and practitioner skills to generate knowledge in technological, operational management, policy, socio-economic, and environmental domains.

AQUASTRESS will generate scientific innovations to improve the understanding of water stress from an integrated multisectoral perspective to support:

  • diagnosis and characterisation of sources and causes of water stress;
  • assessment of the effectiveness of water stress management measures and development of new tailored options;
  • development of supporting methods and tools to evaluate different mitigation options and their potential interactions;
  • development and dissemination of guidelines, protocols, and policies;
  • development of a participatory process to implement solutions tailored to environmental, cultural, economic and institutional settings;
  • identification of barriers to policy mechanism implementation;
  • continuous involvement of citizens and institutions within a social learning process that promotes new forms of water culture and nurtures long-term change and social adaptivity.

The IP adopts a Case Study stakeholder driven approach and is organised in three phases:

  • characterisation of selected reference sites and relative water stress problems,
  • collaborative identification of preferred solution options,
  • testing of solutions according to stakeholder interests and expectations.

It will make a major contribution to the objectives of the Global Change and Ecosystems and supporting the Community Directive 2000/60/EC and the EU Water Initiative.

EXETER/CWS Contribution to AQUASTRESS:

CWS Contribution to AQUASTRESS is the application of Conceptual Modelling, Systems Thinking and System Dynamics Modelling (SDM) for the simulation of the project’s case studies for complex dynamical water and/or environmental systems, that will act as Decision Support Tools, examining various operational scenarios, integrating different technical options for the mitigation of water stress.

SDM is a methodology for studying and managing complex feedback systems. It is typically used when formal analytical models do not exist, but where system simulation can be developed by linking a number of feedback mechanisms. This type of Systems Modelling, being lower in detail and higher in integration, allows the domain experts and the local stakeholders to explore the relationship between various technical options and the overall system behaviour and to increase their understanding of the interactions and impacts among different water system components.

So far there have been two case studies within AQUASTRESS, where SDM has been applied

  • The water system of Kremikovtzi (Bulgaria), where the aim is to reduce clear water consumption and increase water re-use within the plan 
  • The Merguellil valley water system (Tunisia), a hydrological/water resources management model, involving a semi-arid area with increased irrigation demands, including 25 small dams for rainfall harvesting, a large reservoir (El Haouareb) and aquifer recharge.

SDM Software specifications

SDMs are implemented in special visual environments that enable the user to effectively "draw" the system components and their interrelations and run different scenarios. SIMILE® for numerical and VENSIM® for causal-qualitative diagrams have been used for building the models.

Publications

VAMVAKERIDOU-LYROUDIA, L.S. and SAVIC D.A. (2008). "System Dynamics Modelling: The Kremikovtzi Water System", Report No.2008/01, Centre for Water Systems, School of Engineering, Computing and Mathematics, University of Exeter, UK, 132p

VAMVAKERIDOU-LYROUDIA, L.S., SAVIC, D.A., TARNACKI K., WINTGENS T., DIMOVA, G. and RIBAROVA I. (2007). "Conceptual/System Dynamics Modelling Applied for the Simulation of Complex Water Systems", in Water Management Challenges in Global Change, Proc. Int. Conf. CCWI 2007 & SUWM 2007, Leicester UK, 3-5 Sept. 2007, Taylor & Francis Group, London UK, pp. 159-167

Application:Kremikovtzi Water System

The Kremikovtzi metallurgical plant, near Sofia, Bulgaria, constructed initially in 1963, is one of the largest water consumers in the country (total fresh- water consumption 55×106 m3/year on average - roughly equivalent to the water needs of a city with a population of 600 000). Its water supply system is complex and consists of both freshwater (reservoirs, rivers, groundwater) and reused water sources (treated industrial waste water). It also provides water for a number of smaller satellite plants, sharing the same water resources. Some of the system’s freshwater sources are also used by urban and agricultural water users in the Sofia region, leading to regulations for priorities and upper limits to water consumption for industrial use, as well as water stress situations arising in times of drought. SDM has been developed and applied to the Kremikovtzi water system in order to simulate and study future operational scenarios, under varying climatic conditions ("normal", "dry" and "very dry" years) and operational rules.

The general scope for the scenarios and the simulation through SDM is to reduce clear water consumption and increase water re-use within the plan, as well as define suitable operational rules, that will allow the plant to operate under drought and water scarcity conditions. These rules involve hierarchical closure of some less important industrial units and/or reallocation of water resources, defined by the model.

The prototype application involves the water system of the Kremikovtzi industrial plant (Bulgaria), where the aim is to reduce clear water consumption and increase water re-use within the plan. A second application has also been developed for the simulation of the Merguellil Catchment (Tunisia), a hydrological/water resources management model, involving a semi-arid area with increased irrigation demands, a system of 25 small dams for rainfall harvesting, the operation of a large reservoir (El Haouareb) and aquifer recharge.

More related documents are available in the Downloads section

Back to Water resources management

Google+