Flood risk management research consortium - FRMRC (2005-2007)

Funding bodies: Engineering and Physical Science Research Council (EPSRC), Department for Environment, Food & Rural Affairs (DEFRA), Environment Agency, UK Water Industry Research (UKWIR), Natural Environment Research Council (NERC) and the Scottish Executive.

The Flood Risk Management Research Consortium(FRMRC)isan interdisciplinary group investigating the prediction, prevention and mitigation of flooding. The project is being carried out over the period 2004-2008 and involves a number of UK academic institutions with a total budget of £5.7m, the Consortium employs 30 post-doctoral researchers and 12 research students (1 post-doc and 1 student at Exeter).

The Consortium is funded by the EPSRC, in collaboration with the Defra / EA Joint Thematic R&D Programme for Flood & Coastal DefenceUKWIRNERC and the Scottish Executive. The concept behind this innovative joint funding arrangement is that it allows the Consortium to combine the strengths of blue skies and near-market researchers and research philosophies in a truly multi-disciplinary programme.

The research portfolio has been formulated to address key issues in flood science and engineering, while being consistent with the objectives of the funding agencies. The ethos of the consortium is to encourage a holistic approach with research in most work packages conducted jointly by researchers from two or more areas.

FRMRC will address eight Research Priority Areas (RPA), identified as being of key importance by end-users and stakeholders at the workshops organised by EPSRC during 2002:

  1. Project management (integration of RPAs)
  2. Land use management
  3. Real time flood forecasting
  4. Infrastructure management
  5. Whole systems modelling
  6. Urban flood management
  7. Stakeholder and policy
  8. Geomorphology, sediments and habitats
  9. Risk and uncertainty

The Centre for Water Systems is engaged in RPA 6 Urban Flood Management, together with the Pennine Water Group (Sheffield), Imperial College (London) and University of Wales (Aberystwyth) and in collaboration with the University of Belgrade.

Urban flooding is caused by the drainage system being unable to cope with the volume of surface runoff and includes co-incident flooding due to both river and rainfall floods inundating urban areas. Floods in urban areas impact human habitats and are a risk to public health. There is a need for improved modelling to predict urban flood routes and the extent of flooding so that mitigation measures can be designed to cope with unwanted water surcharged from the sewer system. It is planned to develop new serviceability indicators for asset performance and remediation, and to quantify the impact of urban flooding on health.

Methodology and software under development at the Centre will be used along with other tools for simulation of urban flooding. The approach incorporates two specific concepts:

  1. Explicit modelling of water exchange between surcharged flow in a piped system and the surface flow on the streets during a flood, when these two systems form a multiple-looped network involving a complex interaction of flows.
  2. Application of advanced GIS-based analytic tools to predict flood flow paths by effective utilization of digital terrain models, detailed surface cover (land-use) images, spatially and temporally variable rainfall, and other data.

Back to Flood risk management