Project NEPTUNE: Real time anomaly management for water distribution systems

NEPTUNE is a £2.7m joint EPSRC and industrially funded project bringing together seven academic and three industrial collaborators.  The aim of project NEPTUNE, is to advance knowledge and understanding about water supply systems in order to develop novel, robust, practical techniques and tools to optimize efficiency and customer service, through dynamic control or other means.

The key needs, identified by the industrial partners, to be addressed in project NEPTUNE are:

  • To deliver an optimised water distribution system
  • To be able to react to an incident before the customer is effected
  • To optimise the decision making process – to react to real alarms and incidents
  • To develop power harvesting techniques
  • To support the continued drive to reduce leakage
  • To develop innovation in pressure management to deliver key leakage and energy savings
  • To provide automated control and adjustment to the system
  • To build an integrated management system which will monitor leakage, energy, alarms etc
  • To develop online models to simulate the distribution network for the next 24 hours
  • To provide options to make significant savings in energy e.g. through pump schedule optimisation

The core deliverable of the Exeter team is an integrated, risk-based Decision Support System (DSS) for the rapid evaluation of intervention strategies to inform decision-making for sustainable water system operation. To ease the burden on system controllers and staff who are dealing with vast amounts of data, the DSS seeks to assist in: making optimal decisions, prioritizing the reaction to urgent events and identifying false or duplicated alarms.  The DSS facilitates the integration of these diverse outputs into a single, coherent application to be presented to the operator.

Project NEPTUNE is a collaborative project involving two leading UK Water Service Providers - Yorkshire Water Services and United Utilities - and a major provider of automation technologies - AAB. The research work is mainly carried out through the collaboration of several UK universities, including the University of Exeter.

Partners‌‌‌

   

Aims

The aim of the Exeter team is to develop an integrated, risk-based decision support system to evaluate intervention strategies and provide decision makers with the required information to operate a sustainable water system. The Centre for Water Systems, as a part of RPA3, carries out the research work in the following work packages:

  • Decision support system
    To develop an integrated, risk-based decision support framework to support tactical (real-time) and strategic decision making.
  • Intervention management
    To design and implement incident isolation and impact reducion strategies used within risk-based decision making.
  • Risk-based decision making
    The aim is to develop a new general methodology for the management of risk and uncertainty associated with the decision making process for water supply networks.

Outcomes

The project resulted in a prototype DSS currently being developed further through Knowledge Transfer Partnership projects with Yorkshire Water.

The project team at Exeter has filed a patent outlining the methodology developed for the NEPTUNE Decision Support System. We are currently in negotiations to sell our patent rights.

The following papers have been published so far:

  • Bicik, J., Kapelan, Z., Makropoulos, C. and D.A. Savić (2011) Pipe burst diagnostics using evidence theory, Journal of Hydroinformatics, Vol 13, No 4, pp. 596-608.
  • Savić, D.A., J.B. Boxall, B. Ulanicki, Z. Kapelan, C. Makropoulos, R. Fen-ner, K. Soga, I.W. Marshall, C. Maksimovic, I. Postlethwaite, R. Ashley and N. Graham (2008) Project NEPTUNE: improved operation of water distribution networks, Proceedings of the 10th Annual Water Distribution Systems Analysis Conference WDSA2008, Van Zyl, J.E., Ilemobade, A.A., Jacobs, H.E. (eds.), August 17-20, Kruger National Park, South Africa, pp. 543-558, CD-ROM.
  • Awad, H., Z. Kapelan and Savić, D.A. (2008) Analysis of pressure manage-ment economics in water distribution systems, Proceedings of the 10th An-nual Water Distribution Systems Analysis Conference WDSA2008, Van Zyl, J.E., Ilemobade, A.A., Jacobs, H.E. (eds.), August 17-20, Kruger National Park, South Africa, pp. 520-531, CD-ROM.
  • Bicik, J., C. Makropoulos, D. Joksimović, Z. Kapelan, M.S. Morley and Savić, D.A. (2008) Conceptual risk-based decision support methodology for improved near real-time response to WDS failures, Proceedings of the 10th Annual Water Distribution Systems Analysis Conference WDSA2008, Van Zyl, J.E., Ilemobade, A.A., Jacobs, H.E. (eds.), August 17-20, Kruger National Park, South Africa, pp. 510-519, CD-ROM.
  • Bicik, J., Savić, D.A. and Z. Kapelan (2009), Operation of water distribution systems using risk-based decision making, Integrating Water Systems, Boxall & Maksimovic (eds), Taylor and Francis, London, pp. 143-149.
  • Awad, H., Z. Kapelan and Savić, D.A. (2009), Optimal setting of time-modulated pressure reducing valves in water distribution networks using genetic algorithms, Integrating Water Systems, Boxall & Maksimovic (eds), Taylor and Francis, London, pp. 31-37.
  • Morley, M.S., J. Bicik, L.S. Vamvakeridou-Lyrouidia, Z. Kapelan and Savić, D.A. (2009), Neptune DSS: A decision support system near-real time operations management of water distribution systems, Integrating Water Systems, Boxall & Maksimovic (eds), Taylor and Francis, London, pp. 249
  • Vamvakeridou-Lyroudia, L.S., J. Bicik, H. Awad, M.S. Morley, Savić, D.A. and Z. Kapelan (2009), Developing and implementing a real-time intervention management model for water distribution systems, Integrating Water Systems, Boxall & Maksimovic (eds), Taylor and Francis, London, pp. 339-345.
  • Bicik, J., Z. Kapelan and Savić, D.A. (2009), Operational Perspective of the Impact of Failures in Water Distribution Systems, World Environmental and Water Resources Congress, Kansas City, Missouri, 17-21 May, 2009: Great Rivers, ASCE, p. 10, CD-ROM.
  • Bicik, J., C. Makropoulos, Z. Kapelan and Savić, D.A. (2009), The Application of Evidence Theory in Decision Support for Water Distribution System Operations, The 8th International Conference on Hydroinformatics, 12-16 Jan, Concepcion, Chile, CD-ROM.
  • Bicik, J., C. Makropoulos, Z. Kapelan and Savić, D.A. (2010) Risk-Based Prioritisation of Failures in Water Distribution System Operations, HIC2010, Tianjin, China.
  • Vamvakeridou-Lyroudia L.S., Bicik J., Morley M., Savić, D.A., Kapelan Z. (2010) A Real-Time Intervention Management Model For Reducing Impacts Due To Pipe Isolation In Water Distribution Systems, Water Distribution Systems Analysis 2010 - Proceedings of the 12th International Conference, WDSA 2010, pages 209-221.
  • Bicik, J., Kapelan, Z. and Savić D. A.  (2011) Challenges Of In The Imple-mentation Of A Decision Support System For Real-Time Operational Man-agement of Water Distribution Systems Management, Eleventh International Conference on Computing and Control for the Water Industry: Urban Water Management: Challenges and Opportunities, 5-7 Sept, Exeter, UK, p.8.
Google+