

Innovations in Residential Rainwater Harvesting in the UK

A Preliminary Sustainability Assessment of Innovative Rainwater Harvesting for Residential Properties in the UK

Peter Melville-Shreeve (pm277@exeter.ac.uk),
Sarah Ward & David Butler.
Centre for Water Systems, University of Exeter, Exeter UK

Sponsored by:

Severn Trent Water Ltd and The EPSRC

Overview

Background

- UK water sector
- Existing UK RWH market
- Benefits of household RWH

Results

 Patents, roof-storage and low energy / low cost innovations

Study Methodology

- Identify existing RWH technology
- Horizon scan for innovations
- Appraise traditional and innovative RWH approaches

Initial Conclusions

Are innovations more sustainable?

UK Water Sector Water and the UK

- Privatised water and sewerage network with a single water supplier / region & high coverage.
- Annual rainfall in London, 600-800mm/year
- Household water usage = 150 litres/person/day
- Lack of resilience to drought and flooding?

"The South-East has less water per head of population than Sudan or Syria because it is much more densely populated" (Environment Agency Cited in Waterwise, 2009)

Drought risk Normal risk At moderate risk At high risk In drought Cardiff Source: Environment Agency, March 2012

Below average rainfall

UK Policy for RWH

Code for Sustainable Homes (water systems & fittings)

Building Regulations part G (water efficiency)

Building Regulations part H (drainage)

British Standards codes of practice

- BS8515:2009 Rainwater Harvesting Systems
- BS8525-1:2010 Greywater Systems
- BS8595 (tbc) Selection of Water Reuse Systems

Existing UK Residential RWH market Traditional RWH

- 5,000 per annum
- Traditional capture-store-pump-use systems

 <50% of household water demand (WC and laundry)

- Tank size: 1m³ to 6m³
- Regulator suggests RWH supplies are:

"generally more carbon intensive than mains/potable water"

(Environment Agency, 2011)

 Perceived Benefits of RWH For the PROPERTY OWNER

ECONOMIC

Reduced water and sewerage bills

£50-£300 / annum saved

Water available during hosepipe bans

SOCIAL

Social feel-good factor (social)

- "Future" Benefits of RWH
 For the WATER & SEWERAGE COMPANY
 - Reduce Carbon, Energy & Need for Capital Investment?

Study Aim

Identify and undertake an initial appraisal of UK RWH systems against a conceptual model built upon the Three Pillars of Sustainability (Elkington, 2004)

Methodology

- Identify traditional & innovative RWH technologies
 - Approach existing UK suppliers
 - Patent search
 - Develop simple Multi Criteria Analysis

Economic	Installation Cost	
	Annual financial benefit	
	Payback ability	
	Company able to install system	
	within 4 weeks	
	Funding supporting the RWH	
	company	l
	Ease of new build installation	
-	Ease of retrofit installation	
Social	Risk of health issues minimised	ľ
	Risks of structural issues	L
	minimised	
	All roof runoff collected by each	L
	system	ŀ
tal	Large storage achievable	L
Environmental	following development	ŀ
	Zero Operational CO2	ľ
	Low capital CO2	ŀ
	Provides flood management	
_	benefit	
	High Demand met / year	

Traditional RWH Appraisal Four companies assessed

- Specifications and costs provided for a small and large RWH system
- Suppliers estimated on-site installation costs to be >1 times retail price assuming a retrofit scenario.
- Onsite installation costs were therefore assumed at a cost of £1,300 for traditional systems with storage <2m³:
- Cheapest Traditional RWH System estimated at £2,653 with 1m³ tank.

x10 for Yuan = 13,000 RMB

Patents & Innovations

Aqua Harvest and Save, <u>qutter</u> mounted rainwater recovery

- 1m³ roof-space storage
- V low head pump (<0.5m)
- Very low energy requirements (50W pump)
- Easy to retrofit
- Patented load bearing tank system

Patents & Innovations

Flushrain – Downpipe mounted rainwater recovery

- 1m³ roof-space storage
- Low energy requirements
- Easy to retrofit

Capital Cost Assessment
 1m³ roof-space storage systems found to be cheaper

- No external excavation
- Easy retrofit
- Lower manufacturing costs

Simple Multi Criteria Analysis - Summary

1m³ roof-space storage systems have higher "Sustainability Scores":

- No external excavation
- Easy retrofit
- Low operational and capital carbon footprint

Factor	Maximum Score (%)	Comment	Benchmark Traditional RWH		
			A	В	C
Economic	35	Five economic factors have been weighted to derive this score: Installation Cost, Annual financial benefit, Payback-ability, Business-ready, Funding-ready.	22	23	25
Social	20	Four social factors have been weighted to derive this score: Ease of installation, Ease of retrofit installation, Health issues minimised, Risks of structural issues minimised.	13	14	15
Environmental	45	Six environmental factors have been weighted to derive this score: All roof runoff collected, Large storage achievable following optimised design, Low operational CO2, Low capital CO2, Flood management benefit, High demand met.		27	27
TOTAL SCORES	100		54	64	67

Further Work

Conceptualising Further Research

House 1 - No RWH

- 220m³ potable water / annum
- Status quo

House 2 - With RWH

- 164m³ potable water / annum (25% reduction)
- Abstraction reduced, less flooding, cleaner watercourses, reduced energy used for pumping, water infrastructure assets have extended lifetime, lower CO_{2,} less chemical use
- Reduced water used = reduced income for water provider
- More sustainable? Cheaper whole life cost?

Further Work

Research Questions:

- 1) Is residential RWH a sustainable technology for the UK?
- 2) Does the evidence suggest that policy changes or subsidies are required?

Doctorate Project: "RWH in the Wild"

- Install pilot RWH systems in 12 properties
- Monitor water & energy use (>1year) and compare to centralised "costs"
- Identify overall benefits to both customers and environment / water provider.
- Quantify and model broader benefits/negatives of wide scale RWH uptake

Looking Forwards

Initial Findings:

- Estimates project that RWH can be retrofitted in the UK for £2,653.
- Innovative roof-based RWH systems could be achieved for less than £1,000 (if a market develops)
 x10 for Yuan = 10,000 RMB
- Roof- based RWH systems score more highly when appraised in a simple MCA sustainability appraisal.

Areas for Investigation:

- Realworld pilot installations will now be installed and appraised.
- Retrofitting risks (structural loading etc) most be considered
- Water quality risks need to be appraised
- Could these technologies be applied elsewhere?

Elkington, J. (2004) Enter the Triple Bottom Line. The Triple Bottom Line: does it all add up. Published; EarthScan: London UK.

Environment Agency (2011) Position statement - The use of rainwater harvesting systems. http://www.environment-agency.gov.uk/research/library/position/131546.aspx Accessed: 10.06.2013)

Waterwise (2009). Renew project Action a2a, Development of concept and offering. http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=home.showFile&rep=file&fil=RENEW_report_stakeholders.pdf (Accessed06.06.2013)