PREDEX Literature Review

[1] J. L. Anderson. Selection of initial conditions for ensemble forecasts in a simpl perfect model framework. Journal of the Atmospheric Sciences, 53:22-36, 1996. [ DOI ]
[2] J. Barkmeijer, M. Van Gijzen, and F. Bouttier. Singular vectors and estimates of the analysis error covariance metric. Quartly Journal of the Royal Meteorological Society, 124:1695-1713, 1998. [ DOI ]
[3] J. Barkmeijer, T. Iversen, and T. N. Palmer. Forcing singular vectors and other sensitive model structures. Quartly Journal of the Royal Meteorological Society, 129:2401-2423, 2003. [ DOI ]
[4] C. H. Bishop, B. J. Etherton, and S. J. Majumdar. Adaptive sampling with the ensemble transform kalman filter. part I: Theoretical aspects. Monthly Weather Review, 129:420-436, 2001. [ DOI ]
[5] N. E. Bowler, A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare. The MOGREPS short-range ensemble prediction system. Quartly Journal of the Royal Meteorological Society, 134:703-722, 2008. [ DOI ]
[6] N. E. Bowler, A. Arribas, S. E. Beare, K. R. Mylne, and G. J. Shutts. The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system. Quartly Journal of the Royal Meteorological Society, 135:767-776. [ DOI ]
[7] N. E. Bowler and K. R. Mylne. Ensemble transform kalman filter perturbations for a regional ensemble prediction system. Quartly Journal of the Royal Meteorological Society, 135:757-766, 2009. [ DOI ]
[8] R. Buizza and T. N. Palmer. The singular-vector structure of the atmospheric global circulation. Journal of the Atmospheric Sciences, 52:1434-1456, 1995. [ DOI ]
[9] R. M. Errico. What is an adjoint model? Bulletin of the American Meteorological Society, 78:2577-2591, 1997. [ DOI ]
[10] M. Ehrendorfer and J. J. Tribbia. Optimal prediction of forecast error covariances through singular vectors. Journal of the Atmospheric Sciences, 54:286-313, 1997. [ DOI ]
[11] B. F. Farrell. Optimal excitation of neutral rosby waves. Journal of the Atmospheric Sciences, 45:163-172, 1988. [ DOI ]
[12] B. F. Farrell and P. J. Ioannou. Distributed forcing of forecast and assimilation error systems. Journal of the Atmospheric Sciences, 62:460-475, 2005. [ DOI ]
[13] J. Flowerdew, K. Horsburgh, C. Wilson, and K. R. Mylne. Development and evaluation of an ensemble forecasting system for coastal storm surges. Quartly Journal of the Royal Meteorological Society, 136:1444-1456, 2010. [ DOI ]
[14] T. M. Hamill, J. S. Whitaker, and C. Snyder. Distance-dependent filtering of background error covariance estimates in an ensemble kalman filter. Monthly Weather Review, 129:2776-2790, 2001. [ DOI ]
[15] P. L. Houtekamer, H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen. Atmospheric data assimilation with an ensemble kalman filter: Results with real observations. Monthly Weather Review, 133:604-620, 2005. [ DOI ]
[16] P. L. Houtekamer and H. L. Mitchell. A sequential ensemble kalman filter for atmospheric data assimilation. Monthly Weather Review, 129:123-137, 2001. [ DOI ]
[17] M. P. Holland. Slowly mixing systems and intermittency maps. Ergodic Theory and Dynamical Systems, 25:133-159, 2005. [ DOI ]
[18] E. Klinker, F. Rabier, and R. Gelaro. Estimation of key analysis errors using the adjoint technique. Quartly Journal of the Royal Meteorological Society, 124:1909-1933, 1998. [ DOI ]
[19] A. R. Lawrence, M. Leutbecher, and T. N. Palmer. The characteristics of hessian singular vectors using an advanced data assimilation scheme. Quartly Journal of the Royal Meteorological Society, 135:1117-1132, 2009. [ DOI ]
[20] P. T. Legg and K. R. Mylne. Early warnings of severe weather from ensemble forecast information. Weather and Forecasting, 19:891-906, 2004. [ DOI ]
[21] F. Lalaurette. Early detection of abnormal weather conditions using a probabilistic extreme forecast index. Quartly Journal of the Royal Meteorological Society, 129:3037-3057, 2003. [ DOI ]
[22] M. Leutbecher and T. N. Palmer. Ensemble forecasting. Journal of Computational Physics, 227:3515-3539, 2008. [ DOI ]
[23] J. M. Lewis. Roots of ensemble forecasting. Monthly Weather Review, 133:1865-1885, 2005. [ DOI ]
[24] G. Leoncini, R. S. Plant, S. L. Gray, and P. A. Clark. Perturbation growth at the convective scale for CSIP IOP18. Quartly Journal of the Royal Meteorological Society, 136:653-670, 2010. [ DOI ]
[25] E. N. Lorenz. Atmospheric predictability experiments with a large numerical model. Tellus, 34:505-513, 1982. [ DOI ]
[26] E. N. Lorenz. Predictability-A problem partly solved. In T. N. Palmer and R. Hagedorn, editors, Predictability of Weather and Climate, pages 40-58. Cambridge University Press, 1996. [ http ]
[27] E. N. Lorenz and K. A. Emanuel. Optimal sites for supplementary weather observations: Simulation with a small model. Journal of the Atmospheric Sciences, 55:399-414, 1998. [ DOI ]
[28] L. Magnusson, J. Nycander, and E. Kallén. Flow-dependent versus flow-independent initial perturbations for ensemble prediction. Tellus A, 61:194-209, 2009. [ DOI ]
[29] H. L. Mitchell and P. L. Houtekamer. An adaptive ensemble kalman filter. Monthly Weather Review, 128:416-433, 2000. [ DOI ]
[30] H. L. Mitchell and P. L. Houtekamer. Ensemble kalman filter configurations and their performance with the logistic map. Monthly Weather Review, 137:4325-4343, 2009. [ DOI ]
[31] J. Oortwijn and J. Barkmeijer. Perturbations that optimally trigger weather regimes. Journal of the Atmospheric Sciences, 52:3932-3944, 1995. [ DOI ]
[32] D. Orell, L. A. Smith, J. Barkmeijer, and T. N. Palmer. Model error in weather forecasting. Nonlinear Processes in Geophysics, 8:357-371, 2001. [ DOI ]
[33] T. N. Palmer, R. Gelaro, J. Barkmeijer, and R. Buizza. Singular vectors, metrics and adaptive observations. Journal of the Atmospheric Sciences, 55:633-653, 1998. [ DOI ]
[34] M. K. Tippett, J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker. Ensemble square root filters. Monthly Weather Review, 131:1485-1490, 2003. [ DOI ]
[35] R. Vitolo, M. P. Holland, and C. A. T. Ferro. Robust extremes in chaotic deterministic systems. Chaos, 19:043127, 2009. [ DOI ]
[36] J. S. Whitaker and T. M. Hamill. Ensemble data assimilation without perturbed observations. Monthly Weather Review, 130:1913-1924, 2002. [ DOI ]
[37] M. Benedicks and L.-S. Young. Markov extensions and decay of correlations for certain Hénon maps. Asterisque, 261:13-56, 2000. [ http ]
[38] H. P. Bruin, B. Saussol, S. Troubetzkoy, and S. Vaienti. Return time statistics via inducing. Ergodic Theory and Dynamical Systems, 23:991-1013, 2003. [ DOI ]
[39] J. Chazottes and P. Collet. Poisson approximation for the number of visits to balls in nonuniformly hyperbolic dynamical systems. 2010. [ http ]
[40] J. Freitas, A. Freitas, and M. Todd. Hitting time statistics and extreme value theory. Probab. Theory Related Fields, 147:675-710, 2010. [ DOI ]
[41] J. Freitas, A. Freitas, and M. Todd. Extremal index, hitting time statistics and periodicity. 2010. [ http ]
[42] J. Galambos. The Asymptotic Theory of Extreme Order Statistics. John Wiley and Sons, 1978.
[43] C. Gupta. Extreme value distributions for some classes of non-uniformly partially hyperbolic dynamical systems. Ergodic Theory and Dynamical Systems, 30:757-771, 2010. [ DOI ]
[44] M. P. Holland, M. Nicol, and A. Török. Extreme value distributions for non-uniformly hyperbolic dynamical systems. 2010. [ .html ]
[45] N. Haydn, Y. Lacroix, and S. Vaienti. Hitting time and return time statistics in ergodic dynamical systems. Annals of Probability, 33:2043-2050, 2005. [ DOI ]
[46] G. Haiman. Extreme values of the tent map process. Statistics and Probability Letters, 65:451-456, 2003. [ DOI ]
[47] M. R. Leadbetter, G. Lindgren, and H. Rootzén. Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, 1980.
[48] R. M. Loynes. Extreme values in uniformly mixing stationary stochastic processes. Ann. Math. Statist., 36:993-999, 1965. [ DOI ]
[49] I. Melbourne and A. Török. Statistical limit theorems for suspension flows. Israel Journal of Math, 144:191-209, 2004. [ DOI ]
[50] C. Nicolis, V. Balakrishnan, and G. Nicolis. Extreme events in deterministic dynamical systems. Physical Review Letters, 97:210602, 2006. [ DOI ]
[51] L.-S. Young. Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math., 147:585-650, 1998. [ http ]
[52] L.-S. Young. Recurrence times and rates of mixing. Israel J. Math., 110:153-188, 1999. [ DOI ]
[53] R. J. Beare, A. J. Thorpe, and A. A. White. The predictability of extratropical cyclones: Nonlinear sensitivity to localized potential-vorticity perturbations. Quartly Journal of the Royal Meteorological Society, 129:219-237, 2003. [ DOI ]
[54] A. J. Simmons, R. Mureau, and T. Petroliagis. Error growth and estimates of predictability from the ECMWF forecasting system. Quartly Journal of the Royal Meteorological Society, 121:1739-1771, 1995. [ DOI ]
[55] José F. Alves, Christian Bonatti, and Marcelo Viana. SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math., 140(2):351-398, 2000. [ DOI ]
[56] L. D. Landau and E. M. Lifshitz. Course of theoretical physics. Vol. 5: Statistical physics. Translated from the Russian by J. B. Sykes and M. J. Kearsley. Second revised and enlarged edition. Pergamon Press, Oxford, 1968.
[57] Henk W. Broer. KAM theory: the legacy of A. N. Kolmogorov's 1954 paper. Comment on: “The general theory of dynamic systems and classical mechanics” (French) [in proceedings of the international congress of mathematicians, amsterdam, 1954, vol. 1, 315-333, Erven P. Noordhoff N.V., Groningen, 1957]. Bull. Amer. Math. Soc. (N.S.), 41(4):507-521 (electronic), 2004. [ http ]
[58] J. M. Murphy, B. B. B. Booth, M. Collins, G. R. Harris, D. M. H. Sexton, and M. J. Webb. A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 365(1857):1993-2028, August 15 2007. [ DOI ]
[59] Qiudong Wang and Lai-Sang Young. Toward a theory of rank one attractors. Ann. of Math. (2), 167(2):349-480, 2008. [ DOI ]
[60] Stefano Luzzatto, Ian Melbourne, and Frederic Paccaut. The Lorenz attractor is mixing. Comm. Math. Phys., 260(2):393-401, 2005. [ DOI ]
[61] Ana Cristina Moreira Freitas and Jorge Milhazes Freitas. On the link between dependence and independence in extreme value theory for dynamical systems. Statist. Probab. Lett., 78(9):1088-1093, 2008. [ DOI ]
[62] M. R. Leadbetter. Extremes and local dependence in stationary sequences. Z. Wahrsch. Verw. Gebiete, 65(2):291-306, 1983. [ DOI ]
[63] N. H. Bingham. Regular variation and probability: the early years. J. Comput. Appl. Math., 200(1):357-363, 2007. [ DOI ]
[64] Henk Broer, Carles Simó, and Renato Vitolo. Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing. Nonlinearity, 15(4):1205-1267, 2002. [ DOI ]
[65] Jorge Milhazes Freitas and Mike Todd. The statistical stability of equilibrium states for interval maps. Nonlinearity, 22(2):259-281, 2009. [ DOI ]
[66] Jose F. Alves, Maria Carvalho, and Jorge Milhazes Freitas. Statistical stability for Hénon maps of the benedicks-carleson type. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 27:595-637, 2010. [ DOI ]
[67] Colin Sparrow. An introduction to the Lorenz equations. IEEE Trans. Circuits and Systems, 30(8):533-542, 1983. [ DOI ]
[68] Celso Grebogi, Edward Ott, and James A. Yorke. Chaotic attractors in crisis. Phys. Rev. Lett., 48(22):1507-1510, 1982. [ DOI ]
[69] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, 1983.
[70] J. Palis and F. Takens. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Cambridge University Press, 1993.
[71] A. Potapov and M. K. Ali. Robust chaos in neural networks. Physics Letters A, 277(6):310-322, December 2000. [ DOI ]
[72] Soumitro Banerjee, James A. Yorke, and Celso Grebogi. Robust chaos. Phys. Rev. Lett., 80(14):3049-3052, April 1998. [ DOI ]
[73] M. Andrecut and M. K. Ali. Robust chaos in smooth unimodal maps. Phys. Rev. E, 64(2):025203(R), July 2001. [ DOI ]
[74] P Kowalczyk. Robust chaos and border-collision bifurcations in non-invertible piecewise-linear maps. Nonlinearity, 18(2):485-504, 2005. [ DOI ]
[75] Mara Felici, Valerio Lucarini, Antonio Speranza, and Renato Vitolo. Extreme value statistics of the total energy in an intermediate-complexity model of the midlatitude atmospheric jet. part I: Stationary case. J. Atmos. Sci., 64(7):2137-2158, July 2007. [ DOI ]
[76] Mara Felici, Valerio Lucarini, Antonio Speranza, and Renato Vitolo. Extreme value statistics of the total energy in an intermediate-complexity model of the midlatitude atmospheric jet. part II: Trend detection and assessment. J. Atmos. Sci., 64(7):2159-2175, July 2007. [ DOI ]
[77] Stefano Luzzatto and Warwick Tucker. Non-uniformly expanding dynamics in maps with singularities and criticalities. Inst. Hautes Études Sci. Publ. Math., (89):179-226 (2000), 1999. [ DOI ]
[78] Lai-Sang Young. What are SRB measures, and which dynamical systems have them? J. Statist. Phys., 108(5-6):733-754, 2002. [ DOI ]
[79] David Ruelle. Differentiation of SRB states for hyperbolic flows. Ergodic Theory Dynam. Systems, 28(2):613-631, 2008. [ DOI ]
[80] David Ruelle. Differentiation of SRB states. Comm. Math. Phys., 187(1):227-241, 1997. [ DOI ]
[81] David Ruelle. Application of hyperbolic dynamics to physics: some problems and conjectures. Bull. Amer. Math. Soc. (N.S.), 41(3):275-278 (electronic), 2004. [ DOI ]
[82] Rufus Bowen and David Ruelle. The ergodic theory of Axiom A flows. Invent. Math., 29(3):181-202, 1975. [ DOI ]
[83] Giovanni Gallavotti and David Ruelle. SRB states and nonequilibrium statistical mechanics close to equilibrium. Comm. Math. Phys., 190(2):279-285, 1997. [ DOI ]
[84] A. N. Livšic and Ja. G. SinaĬ. Invariant measures that are compatible with smoothness for transitive C-systems. Dokl. Akad. Nauk SSSR, 207:1039-1041, 1972.
[85] Valerio Lucarini, Antonio Speranza, and Renato Vitolo. Parametric smoothness and self-scaling of the statistical properties of a minimal climate model: what beyond the mean field theories? Phys. D, 234(2):105-123, 2007. [ DOI ]
[86] G. Gallavotti and E. G. D. Cohen. Dynamical ensembles in stationary states. J. Statist. Phys., 80(5-6):931-970, 1995. [ DOI ]
[87] F. Bonetto, G. Gallavotti, A. Giuliani, and F. Zamponi. Chaotic hypothesis, fluctuation theorem and singularities. J. Stat. Phys., 123(1):39-54, 2006. [ DOI ]
[88] Zeraoulia Elhadj and J. Sprott. On the robustness of chaos in dynamical systems: Theories and applications. Frontiers of Physics in China, 3(2):195-204, June 2008. [ DOI ]
[89] David Ruelle and Floris Takens. On the nature of turbulence. Comm. Math. Phys., 20:167-192, 1971. [ DOI ]
[90] J.-P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors. Rev. Modern Phys., 57(3, part 1):617-656, 1985. [ DOI ]
[91] Renato Vitolo, Paolo Ruti, Alessandro dell'Aquila, Mara Felici, Valerio Lucarini, and Antonio Speranza. Accessing extremes of mid-latitudinal wave activity: methodology and application. Tellus A, 61:35-49, 2009. [ DOI ]
[92] E. N. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20:130-141, 1963. [ DOI ]
[93] Ana Cristina Moreira Freitas and Jorge Milhazes Freitas. Extreme values for benedicks-carleson quadratic maps. Ergodic Theory Dynam. Systems, 28(4):1117-1133, 2008. [ DOI ]
[94] P. Collet. Statistics of closest return for some non-uniformly hyperbolic systems. Ergodic Theory Dynam. Systems, 21(2):401-420, 2001. [ DOI ]
[95] Jorge Milhazes Freitas. Continuity of SRB measure and entropy for Benedicks-Carleson quadratic maps. Nonlinearity, 18(2):831-854, 2005. [ DOI ]
[96] Chinmaya Gupta, Mark Holland, and Matthew Nicol. Extreme value theory for a class of dynamical systems modeled by young towers. preprint, 2009. [ .html ]
[97] Renato Vitolo and Antonio Speranza. Vortex statistics in a simple quasi-geostrophic model. in preparation, 2008.
[98] Aubin Arroyo and Enrique R. Pujals. Dynamical properties of singular-hyperbolic attractors. Discrete Contin. Dyn. Syst., 19(1):67-87, 2007. [ DOI ]
[99] David Ruelle. Historical behaviour in smooth dynamical systems. In Global analysis of dynamical systems, pages 63-66. Inst. Phys., Bristol, 2001.
[100] Floris Takens. Orbits with historic behaviour, or non-existence of averages. Nonlinearity, 21(3):T33-T36, 2008. [ DOI ]
[101] V. Araujo, M. J. Pacifico, E. R. Pujals, and M. Viana. Singular-hyperbolic attractors are chaotic. Trans. Amer. Math. Soc., 2008. [ DOI ]
[102] Barry Saltzman and Aaron Fleisher. Spectral statistics of the wind at 500 mb. J. Atmos. Sci., 19(2):195-204, March 1962. [ DOI ]
[103] Warwick Tucker. The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math., 328(12):1197-1202, 1999. [ DOI ]
[104] C. A. Morales, M. J. Pacifico, and E. R. Pujals. Singular hyperbolic systems. Proc. Amer. Math. Soc., 127(11):3393-3401, 1999. [ http ]
[105] Kevin Judd and Leonard A. Smith. Indistinguishable states. II. The imperfect model scenario. Phys. D, 196(3-4):224-242, 2004. [ DOI ]
[106] Àngel Jorba and Maorong Zou. A software package for the numerical integration of ODEs by means of high-order Taylor methods. Experiment. Math., 14(1):99-117, 2005. [ http ]
[107] Marcelo Viana. What's new on Lorenz strange attractors? Math. Intelligencer, 22(3):6-19, 2000. [ DOI ]
[108] D. J. Albers, J. C. Sprott, and J. P. Crutchfield. Persistent chaos in high dimensions. Phys. Rev. E, 74(5):No. 057201, 4, 2006. [ DOI ]
[109] D. J. Albers and J. C. Sprott. Structural stability and hyperbolicity violation in high-dimensional dynamical systems. Nonlinearity, 19(8):1801-1847, 2006. [ DOI ]
[110] Jan Beirlant, Yuri Goegebeur, Jozef Teugels, and Johan Segers. Statistics of Extremes: Theory and Applications. John Wiley and Sons, Berlin, 2004.
[111] Giovanni Gallavotti. Foundations of Fluid Dynamics. Springer Verlag, Berlin, 2002.
[112] Stuart Coles. An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Springer, New York, 2001.
[113] Enrique Castillo. Extreme value theory in engineering. Statistical Modeling and Decision Science. Academic Press Inc., Boston, MA, 1988.
[114] Paul Embrechts, Claudia Klüppelberg, and Thomas Mikosch. Modelling extremal events, volume 33 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1997.
[115] P. McCullagh and J. A. Nelder. Generalized linear models. Monographs on Statistics and Applied Probability. Chapman & Hall, London, 1983.
[116] R. A. Rigby and D. M. Stasinopoulos. Generalized additive models for location, scale and shape. J. Roy. Statist. Soc. Ser. C, 54(3):507-554, 2005. [ DOI ]
[117] D. M. Stasinopoulos and R. A. Rigby. Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, 23(7):1-46, 11 2007.
[118] T. J. Hastie. Local regression models. In John M. Chambers and Trevor J. Hastie, editors, Statistical Models in S, pages 309-376 (of xv + 608). Wadsworth & Brooks/Cole, 1991.
[119] Leonardo Mendoza. Continuity of invariant measures for families of 1-dimensional maps. In Mathematical notes, No. 100 (Spanish), pages 91-101. Univ. de Los Andes, Mérida, 1989.
[120] Elmar Kriegler, Jim W. Hall, Hermann Held, Richard Dawson, and Hans Joachim Schellnhuber. Imprecise probability assessment of tipping points in the climate system. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 106(13):5041-5046, March 2009. [ DOI ]

This file was generated by bibtex2html 1.95.