Aerospace applications

An important engineering application area for theoretical developments in fault detection and fault-tolerant control is aerospace systems. As part of GARTEUR FM-AG16 the sliding mode controllers and observers developed were implement on the six-degree-of freedom motion flight simulator called SIMONA at Delft University of Technology and were evaluated by civilian test pilots. As part of the final open workshop, the sliding mode controllers were 'flown' by KLM pilots, and demonstrated live to the public and industrial representatives. The EU FP7-funded project 'ADDSAFE: Advanced Fault Diagnosis for Safer Flight Guidance and Control' built on the ideas from the GARTEUR AG16 project and sought to undertake a full-scale industrial assessment of the fault detection schemes developed in the project through to implementation on the 'Iron'-Bird' facility in Airbus Toulouse. (The Iron-Bird implementation is the final test in the industrial development cycle of any new system for Airbus aircraft prior to actual flight testing, and represents the most rigorous validation of the FDI scheme possible).

Another application area where these ideas have begun to be exploited is spacecraft/satellite systems. In such an environment where deployment is expensive and high risk, once in orbit, if a fault occurs there is no recourse since it is usually prohibitively expense to undertake a satellite 'capture' and repair mission. Satellite autonomy therefore invariably requires Fault Detection and Isolation (FDI) schemes to detect malfunctions and ideally introduce a fault-tolerant capability. Work funded by the European Space Agency called SATFDI in conjunction with DEIMOS-Space Systems (Spain) and Astrium (France) investigated the application of sliding mode observers for fault detection in a satellite demonstrator project. The object was to demonstrate increased Technology Readiness Levels for sliding mode observers in space applications.

Google+