Skip to main content

Biomedical Engineering

Biomedical Engineering

Biomedical Engineering

The Biomedical Engineering research group is an interdisciplinary collaboration between the Departments of Physics and Engineering. The group uses computational and experimental techniques to provide greater understanding of the fundamental properties of biological tissue, how injury and degeneration occur in the musculoskeletal system, and it works closely with the College of Medicine and Health and the Royal Devon & Exeter Hospital to improve medical treatment through the optimisation of therapies, medical devices, and surgical practice.

Research areas

This research focus includes the investigation of joint loading, injury and degeneration, and the evaluation of medical devices. The group has a strong interest in spine biomechanics, particularly in relation to individual posture and loading, spinal injuries due to dynamic loading such those experienced during sports such as rugby, and the mechanisms of and treatments for disc degeneration.

Additional focuses are on the development and evaluation of medical devices for total hip and knee replacements, and dental implants.

The group has interests in both the characterisation of biological tissues, and the development of biomaterials for medical devices. This includes research into the structure of bone and the use of additive manufactured PEEK and auxetic materials for biomedical applications.

We are investigating the relationships between the structures of tissues and their micromechanics, and the biophysics of the fibrous proteins. Currently much of our work is directed towards identification of early changes associated with osteoarthritis and on the nature of the bone:soft tissue interface. Our work on cellular biomechanics is directed towards understanding the role of the pericellular matrix in mechanotransduction in cartilage.

We have developed a range of methodologies to characterise the mechanical and electrical properties of the plasma membranes of intact cells and model systems such as giant vesicles and Langmuir monolayers. These allow us to adopt an integrative approach to problems such as the role of membrane lipids in cellular invasion by pore-forming toxins and the effects of oxidative stress in chronic conditions such as diabetes and in acute inflammation on membrane function.

Group members

Dr Jude Meakin Spinal biomechanics
Professor Peter Winlove Extracellular matrix and cell membrane biophysics
Dr Timothy Holsgrove Orthopaedic biomechanics, spinal injury and degeneration
Dr Junning Chen Biomechanics and computational simulation
Professor Francesca Palombo Brillouin microscopy in biomedicine
Dr Peter Petrov Membranes, soft matter biophysics
Dr Mohammad Akrami Musculoskeletal biomechanics
Dr Corrina Cory Injury biomechanics
Professor Akbar Javadi Computational biomechanics and orthotics
Professor Chris Smith Advanced simulation tools for solid mechanics
Professor Philippe Young Image processing and computational simulation
Professor Oana Ghita Additive layer manufacturing
Professor Aleksandar Pavic Human motion and biomechanics
Professor Ken Evans Auxetics and biomaterials
Professor John Timperley Orthopaedics (hips)
Professor Christina Doyle Biomaterials, tissue regeneration, device development and regulation
Dr Ben Sherlock Translational biophotonics and customised optical imaging systems


Biomedical Engineering Research Laboratory

  • Tissue preparation and storage (-20°C and -80°C)
  • Esco Airstream Class II biological safety cabinet
  • Esco CelCulture CO2 incubator
  • Priorclave Compact 40 autoclave
  • Ductaire 700 fume hood
  • Triple Red Geno type 2 water purification system
  • Instron Elelctropuls E10000 dynamic testing machine
  • Qualisys Miqus 6 camera motion capture system
  • Fiso fibre-optic pressure transducers
  • ADPM Opal wireless wearable sensors
  • Scan IP+FE and Abaqus software for medical image processing and computational modelling

Biomedical Physics Research Laboratories