Ore deposits and critical metals

We work to promote sustainable development through future supplies of raw materials. We research the fundamental geological processes that form ore deposits and apply mineralogical studies to more efficient and environmentally friendly mineral processing and metals stewardship. We work particularly on:

  • Critical metals: rare earths (REE), platinum group elements, niobium, tantalum, indium, tungsten, lithium.
  • Granites and metamorphic rocks in South West England and associated ore deposits.
  • Processes in large magma chambers such as the Skaergaard intrusion, Greenland.
  • The Earth’s most unusual volcanoes that erupt carbonate (‘carbonatite’) magmas.

We have a Critical Metals Alliance with the British Geological Survey.

View our recent publications »

Group members

Camborne School of Mines group members

Critical Metals Alliance

In 2011, Camborne School of Mines and the British Geological Survey (BGS) joined forces to improve research capability in critical metals. The collaboration builds on the knowledge and facilities of each to improve understanding of critical metals ore formation. At the heart of the alliance is BGS Lecturer in Critical and Green Technology Metals Dr Kathryn Moore, leading research into carbonatites and alkaline rock petrogenesis.

The Critical Metals Alliance members are:

Projects

Critical metals are essential in various industrial applications, often in new and green technologies, difficult to substitute and for which the main supply is restricted to just one or two countries. Their supply is thus vulnerable to disruption. The European Union has defined 14 critical materials. Amongst these, we have particular expertise on rare earths, platinum group elements, niobium, tantalum, indium, and tungsten. The University is working in collaboration with the British Geological Survey, to improve our knowledge of how these deposits form and to work on new ways to extract them from waste materials and as by-products.

The rare earth elements include the lanthanide group of the periodic table, and yttrium. They are principally used in high-tech applications, such as high-strength permanent magnets, and are considered as ‘critical metals’ (i.e. an irreplaceable metal with a high supply risk) due to concerns regarding China’s near-dominant control of the market (more than 90 per cent).

At Camborne School of Mines, we are working with industry to understand the geology of new rare earth deposits, new mineral processing techniques and the social and environmental implications of rare-earth mining. CSM are involved in, or leading, the research grants SoS-RARE project, and HiTechAlkCarb.

The geology of South West England is still at the forefront of ground-breaking global research, thanks to the extensive geological exposure and the close association of critical metals with the Cornubian Batholith.

Historically, Camborne School of Mines has worked closely on many major regional projects, and continues to play an integral role in further understanding the processes that led to the geological evolution of the region and formation of the world-class polymetallic orefield.

Active projects are centered on current global research trends:

  • Critical metals and their association with granite magmatism and mineralisation
  • Advanced geoscience modelling of SW England using the Tellus South West data
  • Developing a strategy for improved targeting of enhanced geothermal systems (EGS) energy resources in SW England
  • Tectono-magmatic controls on granite pluton construction on the formation of the SW England metallogenic province
  • Variscan/post-Variscan tectonic evolution
  • Upper Palaeozoic stratigraphy and sedimentology

Presentations

View the slides from PhD student Robert Pell's presentation: "Criticality as a life cycle impact indicator for rare earth elements".

Publications »